Optical microrotors: theory, design and fabrication

Building on the ability to exert torques in optical tweezers, optically-driven rotating micromachines have reached the verge of practical application. Prototype devices have been made, and useful applications are being sought. We outline some general principles that can be applied to the design of optically-rotated devices, and describe a method for rigorous computational modelling that is well-suited to the optimization and engineering of such micromachines. Finally, we describe a method for rapid microfabrication of prototypes for testing, and some results of such tests.

[1]  Norman R. Heckenberg,et al.  Optical torque and symmetry , 2004, SPIE Optics + Photonics.

[2]  Koji Ikuta,et al.  Submicron manipulation tools driven by light in a liquid , 2003 .

[3]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[4]  Shoji Maruo,et al.  Three-dimensional microfabrication with two-photon absorbed photopolymerization , 1996, International Commission for Optics.

[5]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2002, CLEO 2002.

[6]  H. Rubinsztein-Dunlop,et al.  Computational modelling of optical tweezers , 2004 .

[7]  Norman R. Heckenberg,et al.  Optically driven micromachines: progress and prospects , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[8]  Shoji Maruo,et al.  Optically driven micropump produced by three-dimensional two-photon microfabrication , 2006 .

[9]  Optical measurement of torque exerted on an elongated object by a noncircular laser beam , 2004, physics/0403008.

[10]  Halina Rubinsztein-Dunlop,et al.  Physics of optical tweezers. , 2007, Methods in cell biology.

[11]  M. Padgett,et al.  Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle , 2000 .

[12]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[13]  Halina Rubinsztein-Dunlop,et al.  Integrated optomechanical microelements. , 2007, Optics express.

[14]  J. Strickler,et al.  Three-dimensional optical data storage in refractive media by two-photon point excitation. , 1991, Optics letters.

[15]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[16]  Johannes Courtial,et al.  Light’s Orbital Angular Momentum , 2004 .

[17]  Satish M. Mahajan,et al.  Electromagnetic wave technique to determine radiation torque on micromachines driven by light , 2003 .

[18]  K. Fujita [Two-photon laser scanning fluorescence microscopy]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[19]  K. Ikuta,et al.  Real three dimensional micro fabrication using stereo lithography and metal molding , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[20]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[21]  D. Mackowski,et al.  Discrete dipole moment method for calculation of the T matrix for nonspherical particles. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Timo A. Nieminen Comment on "Geometric absorption of electromagnetic angular momentum", C. Konz, G. Benford , 2004 .

[23]  H. Rubinsztein-Dunlop,et al.  Calculation of the T-matrix: general considerations and application of the point-matching method , 2003 .

[24]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[25]  Miles J. Padgett,et al.  Light with a twist in its tail , 2000 .

[26]  P. Ormos,et al.  Integrated optical motor. , 2006, Applied optics.

[27]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.