Hydrogeochemical Interpretation of Baseline Groundwater Conditions at the Olkiluoto Site

[1]  David L. Parkhurst,et al.  An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0 , 1994 .

[2]  S. Sheppard Characterization and isotopic variations in natural waters , 1986 .

[3]  R. Fairbridge The encyclopedia of geochemistry and environmental sciences , 1972 .

[4]  A. Luukkonen,et al.  Geochemical modelling of groundwater evolution and residence time at the Kivetty site , 1998 .

[5]  P. Fritz,et al.  Aqueous sulphates from the Stripa groundwater system , 1989 .

[6]  F. J. Pearson,et al.  Applied isotope hydrogeology: a case study in northern Switzerland. , 1991 .

[7]  F. J. Pearson,et al.  Mass transfer and carbon isotope evolution in natural water systems , 1978 .

[8]  M. Paananen,et al.  The Palmottu Natural Analogue Project , 1995 .

[9]  P. Pitkänen,et al.  Palaeohydrogeological implications for long-term hydrochemical stability at Palmottu , 2002 .

[10]  A. Luukkonen,et al.  Significance and Estimations of Lifetime of Natural Fracture Mineral Buffers in the Olkiluoto Bedrock , 2004 .

[11]  Marcus Laaksoharju,et al.  Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information , 1999 .

[12]  M. Gascoyne Methods of sampling and analysis of dissolved gases in deep groundwaters , 2002 .

[13]  J. Fontes,et al.  The Terrestrial environment , 1980 .

[14]  N. Plummer,et al.  Geochemical evolution of water in the Madison Aquifer in parts of Montana, South Dakota, and Wyoming , 1991 .

[15]  David L. Parkhurst,et al.  The kinetics of calcite dissolution in CO 2 -water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO 2 , 1978 .

[16]  M. Gascoyne Dissolved Gases in Groundwaters at Olkiluoto , 2005 .

[17]  P. Fritz,et al.  Saline Water and Gases in Crystalline Rocks , 1987 .

[18]  P. Pitkänen,et al.  Application of mass-balance and flow simulation calculations to interpretation of mixing at Äspö, Sweden , 1999 .

[19]  L. Wojnar Analysis and interpretation , 1998 .

[20]  A. Hounslow Water Quality Data: Analysis and Interpretation , 1995 .

[21]  G. Matthess,et al.  The properties of groundwater , 1982 .

[22]  J. Drever,et al.  The Geochemistry of Natural Waters: Surface and Groundwater Environments , 1997 .

[23]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[24]  Y. Erel,et al.  RbSr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering , 1997 .

[25]  R. Reyment,et al.  Statistics and Data Analysis in Geology. , 1988 .

[26]  Roy M. Harrison,et al.  Understanding our environment : an introduction to environmental chemistry and pollution , 1992 .

[27]  S. Kasten,et al.  Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia , 1998 .

[28]  S. Macko,et al.  Abiogenic methanogenesis in crystalline rocks , 1993 .

[29]  K. Jöreskog,et al.  Applied Factor Analysis in the Natural Sciences. , 1997 .

[30]  F. N. David,et al.  Geological Factor Analysis , 1976 .

[31]  J. Pöllänen,et al.  Difference Flow and Electric Conductivity Measurements at the Olkiluoto Site in Eurajoki, Boreholes KR29, KR29B, KR30, KR31, KR31B, KR32, KR33 and KR33B , 2005 .

[32]  K. Pedersen,et al.  Distribution and metabolic diversity of microorganisms in deep igneous rock aquifers of Finland , 1999 .

[33]  K. Pedersen Exploration of deep intraterrestrial microbial life: current perspectives. , 2000, FEMS microbiology letters.

[34]  H. Taylor,et al.  Stable isotopes in high temperature geological processes , 1986 .

[35]  Barak Herut,et al.  The role of seawater freezing in the formation of subsurface brines , 1990 .

[36]  P. Fritz,et al.  Water-rock interaction and chemistry of groundwaters from the Canadian Shield , 1984 .

[37]  C. Kendall,et al.  Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA , 1996 .

[38]  S. Frape,et al.  Assessing the past thermal and chemical history of fluids in crystalline rock by combining fluid inclusion and isotopic investigations of fracture calcite , 2000 .

[39]  J. Pöllänen,et al.  Flow and Electric Conductivity Measurements During long-Term Pumping of Borehole Ol-KR6 , 2004 .

[40]  J. Harden,et al.  Chemical weathering of a soil chronosequence on granitoid alluvium : II. Mineralogic and isotopic constraints on the behavior of strontium , 1997 .

[41]  M. Whiticar A geochemial perspective of natural gas and atmospheric methane , 1990 .

[42]  D. Canfield,et al.  Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments , 1996 .

[43]  C. Appelo,et al.  Geochemistry, groundwater and pollution , 1993 .

[44]  David L. Parkhurst,et al.  Development of reaction models for ground-water systems , 1983 .

[45]  Mia Mäntynen Temperature correction coefficients of electrical conductivity and of density measurements for saline groundwater , 2001 .

[46]  A. Starinsky,et al.  The formation of natural cryogenic brines , 2003 .

[47]  Henry Ahokas,et al.  Site Investigation Equipment Developed by Teollisuuden Voima Oy , 1992 .

[48]  J. Michelot,et al.  Origin and residence time of salinity in the Äspö groundwater system , 1999 .

[49]  J. Ward,et al.  Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs , 2002, Nature.

[50]  V. Energy,et al.  Site scale groundwater flow in Olkiluoto - Complementary simulations , 2000 .

[51]  J. Fontes,et al.  The isotope geochemistry of carbon in groundwater at Stripa , 1989 .

[52]  W. Mook Chapter 2 – CARBON-14 IN HYDROGEOLOGICAL STUDIES , 1980 .

[53]  I. Gibson Statistics and Data Analysis in Geology , 1976, Mineralogical Magazine.

[54]  R. Berner A New Geochemical Classification of Sedimentary Environments , 1981 .

[55]  L. N. Plummer,et al.  Geochemical Modeling of the Madison Aquifer in Parts of Montana, Wyoming, and South Dakota , 1990 .

[56]  R. Alley,et al.  Ice-core dating and chemistry by direct-current electrical conductivity , 1992, Journal of Glaciology.

[57]  Daniel C. Melchior,et al.  Chemical Modeling of Aqueous Systems II. , 1990 .

[58]  L. Canter,et al.  Nitrates in Groundwater , 1996 .

[59]  W. Edmunds,et al.  Origin of saline groundwaters in the Carnmenellis Granite (Cornwall, England): Natural processes and reaction during Hot Dry Rock reservoir circulation☆ , 1985 .

[60]  T. Ku An evaluation of the U234/U238 method as a tool for dating pelagic sediments , 1965 .

[61]  E. Gustafsson,et al.  Hydrological and reactive processes during rapid recharge to fracture zones. The Äspö large scale redox experiment , 1999 .

[62]  D. Langmuir,et al.  Use of model-generated Fe3+ ion activities to compute Eh and ferric oxyhydroxide solubilities in anaerobic systems , 1990 .

[63]  H. Craig,et al.  Isotopic Variations in Meteoric Waters D STOR ® , 2022 .

[64]  James W. Ball,et al.  WATEQ4F -- User's manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters , 1991 .

[65]  K. Pedersen,et al.  Regional distribution of microbes in groundwater from HHstholmen, Kivetty, Olkiluoto and Romuvaara, Finland , 2000 .

[66]  I. Clark,et al.  Environmental Isotopes in Hydrogeology , 1997 .

[67]  Michael G. Jones,et al.  The 87Sr86Sr values of Canadian Shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology , 1990 .