Sub-linear root detection, and new hardness results, for sparse polynomials over finite fields

We present a deterministic 2<sup><i>O(t)</i></sup><i>q</i><sup><i>t</i>-2/<i>t</i>-1 +<i>o</i>(1)</sup> algorithm to decide whether a univariate polynomial <i>f</i>, with exactly <i>t</i> monomial terms and degree <<i>q</i>, has a root in F<sub><i>q</i></sub>. Our method is the first with complexity <i>sub-linear</i> in <i>q</i> when <i>t</i>is fixed. We also prove a structural property for the nonzero roots in F<sub><i>q</i></sub> of any <i>t</i>-nomial: the nonzero roots always admit a partition into no more than 2√<i>t</i>-1(<i>q</i>-1)<sup><i>t</i>-2/<i>t</i>-1</sup> cosets of two subgroups <i>S</i><sub>1</sub> ⊆ <i>S</i><sub>2</sub> of F*<sub><i>q</i></sub>. This can be thought of as a finite field analogue of Descartes' Rule. A corollary of our results is the first deterministic sub-linear algorithm for detecting common degree one factors of <i>k</i>-tuples of <i>t</i>-nomials in F<sub><i>q</i></sub>[<i>x</i> when <i>k</i> and <i>t</i> are fixed. When <i>t</i> is not fixed we show that, for <i>p</i> prime, detecting roots in F<sub><i>p</i></sub> for <i>f</i> is NP-hard with respect to $BPP-reductions. Finally, we prove that if the complexity of root detection is sub-linear (in a refined sense), relative to the <i>straight-line program encoding</i>, then NEXP⊆P/poly.

[1]  Adi Shamir,et al.  Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization , 1999, CRYPTO.

[2]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[3]  J. Maurice Rojas,et al.  Faster real feasibility via circuit discriminants , 2009, ISSAC '09.

[4]  Daniele Micciancio,et al.  A Deterministic Single Exponential Time Algorithm for Most Lattice Problems based on Voronoi Cell Computations ( Extended Abstract ) , 2009 .

[5]  Joachim von zur Gathen,et al.  Computing Frobenius maps and factoring polynomials , 2005, computational complexity.

[6]  J. Maurice Rojas,et al.  Randomization, Sums of Squares, and Faster Real Root Counting for Tetranomials and Beyond , 2011, ArXiv.

[7]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[8]  John Christopher The Asymptotic Density of Some k-Dimensional Sets , 1956 .

[9]  David A. Plaisted,et al.  New NP-hard and NP-complete polynomial and integer divisibility problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[10]  Marek Karpinski,et al.  Counting curves and their projections , 1993, computational complexity.

[11]  Erich Kaltofen,et al.  Subquadratic-time factoring of polynomials over finite fields , 1995, STOC '95.

[12]  Marek Karpinski,et al.  On the Computational Hardness of Testing Square-Freeness of Sparse Polynomials , 1999, AAECC.

[13]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[14]  J. Maurice Rojas,et al.  On solving univariate sparse polynomials in logarithmic time , 2005, J. Complex..

[15]  Juan Sabia,et al.  Computing multihomogeneous resultants using straight-line programs , 2007, J. Symb. Comput..

[16]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[17]  T. Tao An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.

[18]  T. L. H.,et al.  The Geometry of René Descartes , 1926, Nature.

[19]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[20]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[21]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[22]  UmansChristopher,et al.  Fast Polynomial Factorization and Modular Composition , 2011 .

[23]  Felipe Cucker,et al.  A Polynomial Time Algorithm for Diophantine Equations in One Variable , 1999, J. Symb. Comput..

[24]  Richard Zippel,et al.  An Explicit Separation of Relativised Random Polynomial Time and Relativised Deterministic Polynomial Time , 1989, Inf. Process. Lett..

[25]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[26]  Michael Clausen,et al.  Algebraic Complexity Theory : With the Collaboration of Thomas Lickteig , 1997 .

[27]  Roy Meshulam An uncertainty inequality for finite abelian groups , 2006, Eur. J. Comb..

[28]  Ryan Williams,et al.  Non-uniform ACC Circuit Lower Bounds , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[29]  bitnetJoos Heintz,et al.  La D Etermination Des Points Isol Es Et De La Dimension D'une Vari Et E Alg Ebrique Peut Se Faire En Temps Polynomial , 1991 .

[30]  Victor Y. Pan,et al.  Improved algorithms for computing determinants and resultants , 2005, J. Complex..

[31]  Ryan Williams,et al.  Improving exhaustive search implies superpolynomial lower bounds , 2010, STOC '10.

[32]  Igor E. Shparlinski,et al.  On Finding Primitive Roots in Finite Fields , 1996, Theor. Comput. Sci..

[33]  Qi Cheng,et al.  Counting Value Sets: Algorithm and Complexity , 2011, ArXiv.

[34]  V. Rich Personal communication , 1989, Nature.

[35]  Avi Wigderson,et al.  In search of an easy witness: exponential time vs. probabilistic polynomial time , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[36]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[37]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[38]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[39]  Joachim von zur Gathen,et al.  Factoring Polynomials Over Finite Fields: A Survey , 2001, J. Symb. Comput..

[40]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[41]  Teresa Krick,et al.  Factoring bivariate sparse (lacunary) polynomials , 2007, J. Complex..

[42]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[43]  Joachim von zur Gathen Who was who in polynomial factorization: 1 , 2006, ISSAC '06.

[44]  Erich Kaltofen,et al.  On the complexity of factoring bivariate supersparse (Lacunary) polynomials , 2005, ISSAC.

[45]  유재철,et al.  Randomization , 2020, Randomization, Bootstrap and Monte Carlo Methods in Biology.

[46]  Phong Q. Nguyen Lattice Reduction Algorithms: Theory and Practice , 2011, EUROCRYPT.

[47]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[48]  H. Lenstra Finding small degree factors of lacunary polynomials , 1999 .

[49]  David A. Plaisted,et al.  New NP-hard and NP-complete polynomial and integer divisibility problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[50]  E. Berlekamp Factoring polynomials over large finite fields* , 1971, SYMSAC '71.

[51]  ChallengesPaul ZimmermannInria Lorrainezimmermann Polynomial Factorization , 1996 .

[52]  Santosh S. Vempala,et al.  Enumerative Lattice Algorithms in any Norm Via M-ellipsoid Coverings , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[53]  Christopher Umans,et al.  Fast polynomial factorization and modular composition in small characteristic , 2008, STOC.

[54]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[55]  Christopher Umans,et al.  Fast Polynomial Factorization and Modular Composition , 2011, SIAM J. Comput..

[56]  Erich Kaltofen,et al.  Polynomial factorization: a success story , 2003, ISSAC '03.

[57]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[58]  R. Canetti,et al.  On the statistical properties of Diffie-Hellman distributions , 2000 .

[59]  David Eugene Smith,et al.  The Geometry of Rene Descartes, Translated from the French and Latin , 1926 .

[60]  J. Maurice Rojas,et al.  Faster p-adic feasibility for certain multivariate sparse polynomials , 2010, J. Symb. Comput..