A note on decoupling of local and global behaviours for the Dagum Random Field
暂无分享,去创建一个
[2] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[3] C. Peng,et al. Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[4] Ignacio N. Lobato,et al. Averaged periodogram estimation of long memory , 1996 .
[5] C.-C. Jay Kuo,et al. Extending self-similarity for fractional Brownian motion , 1994, IEEE Trans. Signal Process..
[6] Tilmann Gneiting,et al. Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..
[7] George Christakos,et al. Modern Spatiotemporal Geostatistics , 2000 .
[8] P. Robinson. Semiparametric Analysis of Long-Memory Time Series , 1994 .
[9] Near Wall Turbulence Modeling Using Fractal Dimensions , 1999 .
[10] M. Ostoja-Starzewski,et al. Linear elasticity of planar delaunay networks: Random field characterization of effective moduli , 1989 .
[11] R. Askey. Theory and application of special functions : proceedings of an advanced seminar sponsored by the Mathematics Research Center, the University of Wisconsin-Madison, March 31-April 2, 1975 , 1975 .
[12] Martin Ostoja-Starzewski,et al. Random field models of heterogeneous materials , 1998 .
[13] A. Yaglom. Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .
[14] P. Robinson. Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .
[15] S. Bochner. Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse , 1933 .
[16] Ove Ditlevsen,et al. A story about estimation of a random field of boulders from incomplete seismic measurements , 2005 .
[17] M. Ostoja-Starzewski. Material spatial randomness: From statistical to representative volume element☆ , 2006 .
[18] Peter Whittle,et al. Hypothesis Testing in Time Series Analysis. , 1951 .
[19] S. P. Neuman,et al. Generating and scaling fractional Brownian motion on finite domains , 2005 .
[20] Andrew T. A. Wood,et al. On the performance of box-counting estimators of fractal dimension , 1993 .
[21] W. Willinger,et al. ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .
[22] P. Hall,et al. Characterizing surface smoothness via estimation of effective fractal dimension , 1994 .
[23] H. E. Hurst,et al. Long-Term Storage Capacity of Reservoirs , 1951 .
[24] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[25] A. Lo. Long-Term Memory in Stock Market Prices , 1989 .
[26] G. Christakos. On the Problem of Permissible Covariance and Variogram Models , 1984 .
[27] Christian Berg,et al. Potential Theory on Locally Compact Abelian Groups , 1975 .
[28] P. Robinson. Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .
[29] Scotti,et al. Fractal dimension of velocity signals in high-Reynolds-number hydrodynamic turbulence. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[30] Manabu Tanaka,et al. ESTIMATION OF THE FRACTAL DIMENSION OF FRACTURE SURFACE PATTERNS BY BOX-COUNTING METHOD , 1999 .
[31] J. R. Wallis,et al. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence , 1969 .
[32] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[33] Fallaw Sowell. Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .
[34] Andrew J. Majda,et al. A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields , 1997 .
[35] Jorge Mateu,et al. Modelling spatio-temporal data: A new variogram and covariance structure proposal , 2007 .
[36] Marc A. Maes,et al. Random Field Modeling of Elastic Properties Using Homogenization , 2001 .
[37] Gareth O. Roberts,et al. Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models , 2006 .
[38] T. Gneiting,et al. Fast and Exact Simulation of Large Gaussian Lattice Systems in ℝ2: Exploring the Limits , 2006 .