A Distributed Model of Spatial Visual Attention

Although biomimetic autonomous robotics relies on the massively parallel architecture of the brain, the key issue is to temporally organize behaviour. The distributed representation of the sensory information has to be coherently processed to generate relevant actions. In the visual domain, we propose here a model of visual exploration of a scene by the means of localized computations in neural populations whose architecture allows the emergence of a coherent behaviour of sequential scanning of salient stimuli. It has been implemented on a real robotic platform exploring a moving and noisy scene including several identical targets.

[1]  S. Tipper,et al.  Selection of moving and static objects for the control of spatially directed action. , 1990, Journal of experimental psychology. Human perception and performance.

[2]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[3]  O. Hikosaka,et al.  Role of the basal ganglia in the control of purposive saccadic eye movements. , 2000, Physiological reviews.

[4]  Leslie G. Ungerleider,et al.  An area specialized for spatial working memory in human frontal cortex. , 1998, Science.

[5]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[6]  A. Treisman Features and Objects: The Fourteenth Bartlett Memorial Lecture , 1988, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[7]  C. Frith,et al.  The Role of Working Memory in Visual Selective Attention , 2001, Science.

[8]  M. Posner,et al.  Components of visual orienting , 1984 .

[9]  L. Craighero,et al.  Eye Position Affects Orienting of Visuospatial Attention , 2004, Current Biology.

[10]  J. G. Taylor,et al.  Neural ‘bubble’ dynamics in two dimensions: foundations , 1999, Biological Cybernetics.

[11]  Laurent Itti,et al.  Modelling Primate Visual Attention , 2003 .

[12]  R. Desimone,et al.  The Role of Neural Mechanisms of Attention in Solving the Binding Problem , 1999, Neuron.

[13]  Hervé Frezza-Buet,et al.  Integration of Biologically Inspired Temporal Mechanisms into a Cortical Framework fo Sequence Processing , 2001, Sequence Learning.

[14]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[15]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[16]  Nicolas P. Rougier,et al.  Emergence of attention within a neural population , 2006, Neural Networks.

[17]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[18]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  Thomas P. Trappenberg,et al.  Self-organising continuous attractor networks with multiple activity packets, and the representation of space , 2004, Neural Networks.

[20]  J. D. Cowan,et al.  Large-scale activity in neural nets I: Theory with application to motoneuron pool responses , 2004, Biological Cybernetics.

[21]  Allen Allport,et al.  Visual attention , 1989 .

[22]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[23]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[25]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[26]  G. Rizzolatti,et al.  Space and selective attention , 1994 .

[27]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[28]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[29]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[30]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[31]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[32]  Nicolas P. Rougier,et al.  Modèles de mémoires pour la navigation autonome , 2000 .

[33]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[34]  G. Rizzolatti,et al.  Spatial attention-determined modifications in saccade trajectories. , 1995, Neuroreport.

[35]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[36]  D. Gitelman,et al.  Covert Visual Spatial Orienting and Saccades: Overlapping Neural Systems , 2000, NeuroImage.

[37]  S Grillner,et al.  Activity-related calcium dynamics in lamprey motoneurons as revealed by video-rate confocal microscopy , 1995, Neuron.

[38]  C. Koch,et al.  Recurrent excitation in neocortical cells , 1995 .

[39]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[40]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.