Maximum k-regular induced subgraphs

Abstract Independent sets, induced matchings and cliques are examples of regular induced subgraphs in a graph. In this paper, we prove that finding a maximum cardinality k-regular induced subgraph is an NP-hard problem for any fixed value of k. We propose a convex quadratic upper bound on the size of a k-regular induced subgraph and characterize those graphs for which this bound is attained. Finally, we extend the Hoffman bound on the size of a maximum 0-regular subgraph (the independence number) from k=0 to larger values of k.