The transport barrier in intraperitoneal therapy.

The peritoneal cavity is important in clinical medicine because of its use as a portal of entry for drugs utilized in regional chemotherapy and as a means of dialysis for anephric patients. The barrier between the therapeutic solution in the cavity and the plasma does not correspond to the classic semipermeable membrane but instead is a complex structure of cells, extracellular matrix, and blood microvessels in the surrounding tissue. New research on the nature of the capillary barrier and on the orderly array of extracellular matrix molecules has provided insights into the physiological basis of osmosis and the alterations in transport that result from infusion of large volumes of fluid. The anatomic peritoneum is highly permeable to water, small solutes, and proteins and therefore is not a physical barrier. However, the cells of the mesothelium play an essential role in the immune response in the cavity and produce cytokines and chemokines in response to contact with noncompatible solutions. The process of inflammation, which depends on the interaction of mesothelial, interstitial, and endothelial cells, ultimately leads to angiogenesis and fibrosis and the functional alteration of the barrier. New animal models, such as the transgenic mouse, will accelerate the discovery of methods to preserve the functional peritoneal barrier.

[1]  B. Duling,et al.  Adenosine A3 Receptor Activation Modulates the Capillary Endothelial Glycocalyx , 2004, Circulation research.

[2]  O. Feron,et al.  Experimental diabetes induces functional and structural changes in the peritoneum. , 2002, Kidney international.

[3]  K. Nolph,et al.  High volume, low frequency continuous ambulatory peritoneal dialysis. , 1983, Kidney international.

[4]  J. Levick Flow through interstitium and other fibrous matrices. , 1987, Quarterly journal of experimental physiology.

[5]  K. Wieczorowska-Tobis,et al.  Evidence for Less Irritation to the Peritoneal Membrane in Rats Dialyzed with Solutions Low in Glucose Degradation Products , 2004, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[6]  Carl Nathan,et al.  Nitric oxide synthases: Roles, tolls, and controls , 1994, Cell.

[7]  E. Vonesh,et al.  Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis. , 1994, Journal of the American Society of Nephrology : JASN.

[8]  N. Topley,et al.  Biocompatibility of Peritoneal Dialysis Fluids , 1992, The International journal of artificial organs.

[9]  M. Flessner The Importance of the Interstitium in Peritoneal Transport , 1996, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[10]  A. Wieslander,et al.  Heat Sterilization of Fluids for Peritoneal Dialysis Gives Rise to Aldehydes , 1993, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[11]  D. Spain,et al.  Generalized Dilation of the Visceral Microvasculature by Peritoneal Dialysis Solutions , 2002, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[12]  U. Frei,et al.  The peritoneal fibroblast and the control of peritoneal inflammation. , 1996, Kidney international. Supplement.

[13]  J. Balligand,et al.  Mice that lack endothelial nitric oxide synthase are protected against functional and structural modifications induced by acute peritonitis. , 2003, Journal of the American Society of Nephrology : JASN.

[14]  Trevor Heath,et al.  di Fiore's Atlas of Histology, with Functional Correlations , 1996 .

[15]  R. Gokal,et al.  The Textbook of Peritoneal Dialysis , 1994, Springer Netherlands.

[16]  P. Rutherford,et al.  Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. , 2003, Journal of the American Society of Nephrology : JASN.

[17]  R. Krediet The physiology of peritoneal solute transport and ultrafiltration , 2000 .

[18]  S. Bigler,et al.  Is the Peritoneum a Significant Transport Barrier in Peritoneal Dialysis? , 2003, Peritoneal Dialysis International.

[19]  J. Waniewski,et al.  Lyphatic absorption in CAPD patients with loss of ultrafiltration capacity. , 1995, Blood purification.

[20]  N. Topley,et al.  The Cytokine Network Controlling Peritoneal Inflammation , 1995, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[21]  D. Zemel,et al.  Analysis of Inflammatory Mediators and Peritoneal Permeability to Macromolecules Shortly before the Onset of Overt Peritonitis in Patients Treated with CAPD , 1995, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[22]  Roger C. Crafts,et al.  Textbook of Human Anatomy , 1957 .

[23]  M. Flessner,et al.  Improving contact area between the peritoneum and intraperitoneal therapeutic solutions. , 2001, Journal of the American Society of Nephrology : JASN.

[24]  M. Flessner,et al.  Peritoneal transport physiology: insights from basic research. , 1991, Journal of the American Society of Nephrology : JASN.

[25]  L. Tune,et al.  Acetylcholine and Delirium , 1999, Dementia and Geriatric Cognitive Disorders.

[26]  T. Shigematsu,et al.  Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. , 1997, Kidney international.

[27]  B. Grabensee,et al.  Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. , 2001, Kidney international. Supplement.

[28]  D. Brenner,et al.  Intraperitoneal chemotherapy: a review. , 1986, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[29]  T. Weinstein,et al.  The peritoneal membrane in peritoneal dialysis patients: estimation of its functional surface area by applying stereologic methods to computerized tomography scans. , 1999, Journal of the American Society of Nephrology : JASN.

[30]  R. Tilton,et al.  Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. , 2001, Journal of the American Society of Nephrology : JASN.

[31]  B. Rippe,et al.  Effects of peritoneal hyaluronidase treatment on transperitoneal solute and fluid transport in the rat. , 2000, Acta physiologica Scandinavica.

[32]  S. Weinbaum,et al.  A diffusion wake model for tracer ultrastructure-permeability studies in microvessels. , 1995, The American journal of physiology.

[33]  B. Duling,et al.  Permeation of the luminal capillary glycocalyx is determined by hyaluronan. , 1999, American journal of physiology. Heart and circulatory physiology.

[34]  B. Duling,et al.  Capillary endothelial surface layer selectively reduces plasma solute distribution volume. , 2000, American journal of physiology. Heart and circulatory physiology.

[35]  R. Reed,et al.  Integrins transmembrane links between the extracellular matrix and cell interior. , 1995 .

[36]  S. Weinbaum,et al.  A model for interpreting the tracer labeling of interendothelial clefts , 1997, Annals of Biomedical Engineering.

[37]  O. Devuyst,et al.  Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. , 2000, Journal of the American Society of Nephrology : JASN.

[38]  J. Dobbie,et al.  Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. , 1990, Advances in peritoneal dialysis. Conference on Peritoneal Dialysis.

[39]  A. Verkman,et al.  Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. , 1999, The American journal of physiology.

[40]  B. Duling,et al.  Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. , 1996, Circulation research.

[41]  J. Collins,et al.  Inert gas exchange of subcutaneous and intraperitoneal gas pockets in piglets. , 1981, Respiration physiology.

[42]  A. Wieslander,et al.  Heat sterilized PD-fluids impair growth and inflammatory responses of cultured cell lines and human leukocytes. , 1993, Clinical nephrology.

[43]  Peter Agre,et al.  Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein , 1992, Science.

[44]  R. Pyper Peritoneal Dialysis , 1948, The Ulster medical journal.

[45]  Tsutomu Inoue,et al.  Selective depletion of fibroblasts preserves morphology and the functional integrity of peritoneum in transgenic mice with peritoneal fibrosing syndrome. , 2003, Kidney international.

[46]  M. Flessner,et al.  Increasing peritoneal contact area during dialysis improves mass transfer. , 2001, Journal of the American Society of Nephrology : JASN.

[47]  Geraint T. Williams,et al.  Morphologic changes in the peritoneal membrane of patients with renal disease. , 2002, Journal of the American Society of Nephrology : JASN.

[48]  D. Kerr,et al.  Prolonged intraperitoneal infusion of 5-fluorouracil using a novel carrier solution. , 1996, British Journal of Cancer.

[49]  B. Duling,et al.  TNF-α increases entry of macromolecules into luminal endothelial cell glycocalyx , 2000 .

[50]  B. Haraldsson,et al.  Computer simulations of peritoneal fluid transport in CAPD. , 1991, Kidney international.

[51]  J. Waniewski,et al.  Aqueous solute concentrations and evaluation of mass transport coefficients in peritoneal dialysis. , 1992, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[52]  J. Dobbie Ultrastructure and pathology of the peritoneum in peritoneal dialysis , 1994 .

[53]  B. Rippe,et al.  Fluid and Electrolyte Transport across the Peritoneal Membrane during CAPD According to the Three-pore Model , 2004, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[54]  R. Blasberg,et al.  A distributed model of peritoneal-plasma transport: tissue concentration gradients. , 1985, The American journal of physiology.

[55]  T. Miyata,et al.  Advanced glycation and lipidoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds. , 2000, Kidney international.

[56]  M. Kramer,et al.  Contrasting changes in solute transport and ultrafiltration with peritonitis in CAPD patients. , 1981, Transactions - American Society for Artificial Internal Organs.

[57]  H. Wiig,et al.  Interstitial exclusion of albumin in rat tissues measured by a continuous infusion method. , 1992, The American journal of physiology.

[58]  J. Jimenez-Heffernan,et al.  Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. , 2003, The New England journal of medicine.

[59]  J. Waniewski,et al.  Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. , 1990, Kidney international.

[60]  B. Rippe,et al.  Transport asymmetry in peritoneal dialysis: application of a serial heteroporous peritoneal membrane model. , 2001, American journal of physiology. Renal physiology.

[61]  Mandal Ak Perspectives in the pathogenesis and management of acute renal failure. , 1981 .

[62]  D. Alberts,et al.  Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. , 1996, The New England journal of medicine.

[63]  A. Wieslander,et al.  In Vitro Biocompatibility of a Heat -Sterilized, Low Toxic, and Less Acidic Fluid for Peritoneal Dialysis , 1995, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[64]  C. Visser,et al.  Intraperitoneal Interleukin-8 and Neutrophil Influx in the Initial Phase of a Capd Peritonitis , 1996, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[65]  R. Gokal,et al.  Textbook of Peritoneal Dialysis , 2000, Springer Netherlands.

[66]  M. Kolb,et al.  Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. , 2002, Journal of the American Society of Nephrology : JASN.

[67]  D. Kerr,et al.  A pilot study of adjuvant intraperitoneal 5-fluorouracil using 4% icodextrin as a novel carrier solution. , 2003, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[68]  S. Davies,et al.  Quantifying comorbidity in peritoneal dialysis patients and its relationship to other predictors of survival. , 2002, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[69]  B. Haraldsson,et al.  How Are Macromolecules Transported Across the Capillary Wall , 1987 .

[70]  C van Ypersele de Strihou,et al.  Alterations in nonenzymatic biochemistry in uremia: origin and significance of "carbonyl stress" in long-term uremic complications. , 1999, Kidney international.

[71]  S. Davies Monitoring of Long-Term Peritoneal Membrane Function , 2001, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[72]  M. Kolb,et al.  Gene Transfer of Transforming Growth Factor- 1 to the Rat Peritoneum: Effects on Membrane Function , 2001 .

[73]  D. Collins,et al.  Peritoneal dialysis efficiency in relation to body weight , 1966 .

[74]  K. Nolph,et al.  Acute changes in peritoneal morphology and transport properties with infectious peritonitis and mechanical injury. , 1983, Kidney international.

[75]  J. Nagy,et al.  Mesothelial Cell Transplantation in Models of Acute Inflammation and Chronic Peritoneal Dialysis , 2003, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[76]  T. Borg,et al.  Molecular recognition of the extracellular matrix by cell surface receptors. , 1996 .

[77]  B. Duling,et al.  Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine A2A receptor activation. , 2003, American journal of physiology. Heart and circulatory physiology.

[78]  H. Ha,et al.  Effects of Peritoneal Dialysis Solutions on the Secretion of Growth Factors and Extracellular Matrix Proteins by Human Peritoneal Mesothelial Cells , 2002, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[79]  M. De Carlo,et al.  Interstitial exclusion of IgG in rat tissues estimated by continuous infusion. , 1994, The American journal of physiology.

[80]  R. Reed,et al.  Blockade of beta 1-integrins in skin causes edema through lowering of interstitial fluid pressure. , 1992, Circulation research.

[81]  J. Schultz,et al.  Permeability of interstitial space of muscle (rat diaphragm) to solutes of different molecular weights. , 1978, Journal of pharmaceutical sciences.

[82]  M. Markman Intraperitoneal therapy of ovarian cancer. , 1998, Seminars in oncology.

[83]  S. Davies,et al.  Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. , 2001, Journal of the American Society of Nephrology : JASN.

[84]  U. Frei,et al.  Effect of glucose degradation products on human peritoneal mesothelial cell function. , 2000, Journal of the American Society of Nephrology : JASN.

[85]  D. Rifkin,et al.  Biological roles of fibroblast growth factor-2. , 1997, Endocrine reviews.

[86]  H. Ha,et al.  High glucose–induced PKC activation mediates TGF-β1 and fibronectin synthesis by peritoneal mesothelial cells , 2001 .

[87]  L. Gotloib,et al.  Hemodynamic Effects of Increasing Intraabdominal Pressure in Peritoneal Dialysis , 1980 .

[88]  Markman Intraperitoneal Therapy of Ovarian Cancer. , 1996, The oncologist.

[89]  S. Nielsen,et al.  In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. , 1996, The American journal of physiology.

[90]  M. Flessner,et al.  Effect of intraperitoneal pressures on tissue water of the abdominal muscle. , 2000, American journal of physiology. Renal physiology.

[91]  I. Macdougall Hyporesponsiveness to Anemia Therapy—What are we Doing Wrong? , 2001, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[92]  A. Mattocks,et al.  Acceleration of peritoneal dialysis by surface-active agents. , 1968, Journal of pharmaceutical sciences.

[93]  P. Sugarbaker,et al.  Extent of parietal peritonectomy does not change intraperitoneal chemotherapy pharmacokinetics , 2003, Cancer Chemotherapy and Pharmacology.

[94]  O. Devuyst,et al.  Toward better dialysis compatibility: advances in the biochemistry and pathophysiology of the peritoneal membranes. , 2002, Kidney international.

[95]  W. Smit,et al.  Quantification of free water transport in peritoneal dialysis. , 2004, Kidney international.

[96]  J. Winchester,et al.  Frontiers in Peritoneal Dialysis , 1986, Springer Berlin Heidelberg.

[97]  P. Bonniaud,et al.  Basic Mechanisms and Clinical Implications of Peritoneal Fibrosis , 2003, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[98]  M. Flessner,et al.  Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. , 1983, The American journal of physiology.

[99]  K. Książek,et al.  Mesothelial Toxicity of Peritoneal Dialysis Fluids is Related Primarily to Glucose Degradation Products, Not to Glucose Per Se , 2003, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[100]  J. Balligand,et al.  Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis. , 1999, Journal of the American Society of Nephrology : JASN.

[101]  R. Gokal History of peritoneal dialysis , 2000 .

[102]  Lloyd Jk,et al.  Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. , 1990 .

[103]  The Peritoneal Microcirculation in Peritoneal Dialysis , 2001, Microcirculation.

[104]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[105]  M. Flessner,et al.  Pressure threshold for fluid loss from the peritoneal cavity. , 1996, The American journal of physiology.

[106]  F. Jamar,et al.  Expression of aquaporin-1 in a long-term peritoneal dialysis patient with impaired transcellular water transport. , 1999, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[107]  G. Neufeld,et al.  Vascular endothelial growth factor (VEGF) and its receptors , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[108]  C. Brown,et al.  Fluid dynamics in man of an intraperitoneal drug delivery solution: 4% icodextrin. , 2001, Drug delivery.

[109]  T. Henle,et al.  3-Deoxyglucosone, a Promoter of Advanced Glycation end Products in Fluids for Peritoneal Dialysis , 1998, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[110]  J. Rubin,et al.  Measurements of peritoneal surface area in man and rat. , 1988, The American journal of the medical sciences.

[111]  B. Rippe,et al.  Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. , 1989, Kidney international.

[112]  T. Weinstein,et al.  Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. , 2002, Journal of the American Society of Nephrology : JASN.

[113]  O. Devuyst,et al.  Inhibition of nitric oxide synthase reverses changes in peritoneal permeability in a rat model of acute peritonitis. , 2001, Kidney international.

[114]  M. Markman Intraperitoneal chemotherapy. , 1991, Seminars in oncology.

[115]  B. Haraldsson,et al.  Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. , 1987, Acta physiologica Scandinavica.

[116]  T. Stompór,et al.  Selected Growth Factors in Peritoneal Dialysis: Their Relationship to Markers of Inflammation, Dialysis Adequacy, Residual Renal Function, and Peritoneal Membrane Transport , 2002, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[117]  B. Kone Nitric oxide in renal health and disease. , 1997, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[118]  M. Baron Structure of the intestinal peritoneum in man , 1941 .

[119]  C. Visser,et al.  Identification of the major chemokines that regulate cell influxes in peritoneal dialysis patients. , 1996, Journal of the American Society of Nephrology : JASN.

[120]  K. Craig,et al.  The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. , 2004, Kidney international.

[121]  M. Flessner,et al.  Small-solute transport across specific peritoneal tissue surfaces in the rat. , 1996, Journal of the American Society of Nephrology : JASN.

[122]  L. Cooper,et al.  USRDS. 2001 Annual Data Report. , 2001, Nephrology news & issues.

[123]  J. Daugirdas,et al.  Kinetics of peritoneal fluid absorption in patients with chronic renal failure. , 1980, The Journal of laboratory and clinical medicine.