Stability conditions for generic K3 categories

Abstract A K3 category is by definition a Calabi–Yau category of dimension two. Geometrically K3 categories occur as bounded derived categories of (twisted) coherent sheaves on K3 or abelian surfaces. A K3 category is generic if there are no spherical objects (or just one up to shift). We study stability conditions on K3 categories as introduced by Bridgeland and prove his conjecture about the topology of the stability manifold and the autoequivalences group for generic twisted projective K3, abelian surfaces, and K3 surfaces with trivial Picard group.

[1]  H. Uehara,et al.  Stability Conditions on An-Singularities , 2010 .

[2]  D. Huybrechts,et al.  Derived equivalences of K3 surfaces and orientation , 2007, 0710.1645.

[3]  Emanuele Macrì Stability conditions on curves , 2007, Mathematical Research Letters.

[4]  C. McMullen BIMEROMORPHIC AUTOMORPHISM GROUPS OF NON-PROJECTIVE HYPERKÄHLER MANIFOLDS — A NOTE INSPIRED BY , 2007 .

[5]  So Okada On stability manifolds of Calabi-Yau surfaces , 2006, math/0608361.

[6]  P. Stellari,et al.  Twisted Fourier–Mukai functors , 2006, math/0605229.

[7]  D. Huybrechts Derived and abelian equivalence of K3 surfaces , 2006, math/0604150.

[8]  T. Bridgeland Stability Conditions on a Non-Compact Calabi-Yau Threefold , 2005, math/0509048.

[9]  L. V. Keldysh Fourier-Mukai Transforms in Algebraic Geometry , 2006 .

[10]  Daniel Huybrechts,et al.  Fourier-Mukai transforms in algebraic geometry , 2006 .

[11]  D. Huybrechts MODULI SPACES OF TWISTED SHEAVES ON A PROJECTIVE VARIETY , 2006 .

[12]  D. Huybrechts,et al.  EQUIVALENCES OF TWISTED K 3 SURFACES , 2005 .

[13]  Emanuele Macrì Some examples of spaces of stability conditions on derived categories , 2004, math/0411613.

[14]  K. Yoshioka Moduli spaces of twisted sheaves on a projective variety , 2004, math/0411538.

[15]  So Okada Stability Manifold of P^1 , 2004, math/0411220.

[16]  D. Huybrechts,et al.  Equivalences of twisted K3 surfaces , 2004, math/0409030.

[17]  K. Oguiso Bimeromorphic automorphism groups of non-projective hyperkähler manifolds—a note inspired by C.T. McMullen , 2003, math/0312515.

[18]  A. Polishchuk,et al.  Sheaves of t-structures and valuative criteria for stable complexes , 2003, math/0309435.

[19]  T. Bridgeland Stability conditions on $K3$ surfaces , 2003, math/0307164.

[20]  D. Huybrechts GENERALIZED CALABI–YAU STRUCTURES, K3 SURFACES, AND B-FIELDS , 2003, math/0306162.

[21]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[22]  M. Verbitsky Coherent sheaves on general K3 surfaces and tori , 2002, math/0205210.

[23]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[24]  A. Maciocia,et al.  Complex surfaces with equivalent derived categories , 2001, 1909.08968.

[25]  Richard P. Thomas,et al.  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[26]  D. Orlov,et al.  Equivalences of derived categories and K3 surfaces , 1996, alg-geom/9606006.

[27]  N. Spaltenstein Resolutions of unbounded complexes , 1988 .

[28]  H. W. Schuster Locally free resolutions of coherent sheaves on surfaces. , 1982 .