Frontiers in Synaptic Neuroscience Synaptic Neuroscience

Cell types rich in mitochondria, including neurons, display a high energy demand and a need for calcium buffering. The importance of mitochondria for proper neuronal function is stressed by the occurrence of neurological defects in patients suffering from a great variety of diseases caused by mutations in mitochondrial genes. Genetic and pharmacological evidence also reveal a role of these organelles in various aspects of neuronal physiology and in the pathogenesis of neurodegenerative disorders. Yet the mechanisms by which mitochondria can affect neurotransmission largely remain to be elucidated. In this review we focus on experimental data that suggest a critical function of synaptic mitochondria in the function and organization of synaptic vesicle pools, and in neurotransmitter release during intense neuronal activity. We discuss how calcium handling, ATP production and other mitochondrial mechanisms may influence synaptic vesicle pool organization and synaptic function. Given the link between synaptic mitochondrial function and neuronal communication, efforts toward better understanding mitochondrial biology may lead to novel therapeutic approaches of neurological disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and psychiatric disorders that are at least in part caused by mitochondrial deficits.

[1]  The axonal transport of mitochondria , 2005, Journal of Cell Science.

[2]  Angela C. Poole,et al.  The Mitochondrial Fusion-Promoting Factor Mitofusin Is a Substrate of the PINK1/Parkin Pathway , 2010, PloS one.

[3]  Atsushi Tanaka Parkin‐mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network , 2010, FEBS letters.

[4]  J. Milbrandt,et al.  Mitofusin 2 Is Necessary for Transport of Axonal Mitochondria and Interacts with the Miro/Milton Complex , 2010, The Journal of Neuroscience.

[5]  P. Wild,et al.  Mitochondria get a Parkin' ticket , 2010, Nature Cell Biology.

[6]  Mark H Ellisman,et al.  The Micro-Architecture of Mitochondria at Active Zones: Electron Tomography Reveals Novel Anchoring Scaffolds and Cristae Structured for High-Rate Metabolism , 2010, The Journal of Neuroscience.

[7]  N. Déglon,et al.  Mitochondria in Huntington's disease. , 2010, Biochimica et biophysica acta.

[8]  K. Takahashi-Niki,et al.  DJ-1 binds to mitochondrial complex I and maintains its activity. , 2009, Biochemical and biophysical research communications.

[9]  Jing Zhang,et al.  Glutamate, excitotoxicity, and programmed cell death in parkinson disease , 2009, Experimental Neurology.

[10]  T. Gasser,et al.  DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders. , 2009, Free radical biology & medicine.

[11]  T. Gunter,et al.  Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms. , 2009, Biochimica et biophysica acta.

[12]  D. Chan,et al.  Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases , 2009, Human molecular genetics.

[13]  Huan Ma,et al.  KIF5B Motor Adaptor Syntabulin Maintains Synaptic Transmission in Sympathetic Neurons , 2009, The Journal of Neuroscience.

[14]  J. Dittman,et al.  Molecular circuitry of endocytosis at nerve terminals. , 2009, Annual review of cell and developmental biology.

[15]  D. Ben-Shachar The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia , 2009, Journal of Neural Transmission.

[16]  H. Bellen,et al.  A Synaptic Vesicle-Associated Ca2+ Channel Promotes Endocytosis and Couples Exocytosis to Endocytosis , 2009, Cell.

[17]  Qian Cai,et al.  Mitochondrial transport and docking in axons , 2009, Experimental Neurology.

[18]  J. Dubinsky Heterogeneity of nervous system mitochondria: Location, location, location! , 2009, Experimental Neurology.

[19]  Jianhua Xu,et al.  Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal , 2009, Nature Neuroscience.

[20]  C. Elger,et al.  Mitochondrial involvement in temporal lobe epilepsy , 2009, Experimental Neurology.

[21]  Peter Walter,et al.  Supporting Online Material for An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen , 2009 .

[22]  George Perry,et al.  Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease , 2009, The Journal of Neuroscience.

[23]  P. Verstreken,et al.  Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function , 2009, EMBO molecular medicine.

[24]  D. Attwell,et al.  Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent Localization of Mitochondria at Synapses , 2009, Neuron.

[25]  G. Hajnóczky,et al.  MAM: more than just a housekeeper. , 2009, Trends in cell biology.

[26]  O. Shupliakov The synaptic vesicle cluster: A source of endocytic proteins during neurotransmitter release , 2009, Neuroscience.

[27]  T. Ueda,et al.  Synaptic Vesicle-bound Pyruvate Kinase can Support Vesicular Glutamate Uptake , 2009, Neurochemical Research.

[28]  V. Volpini,et al.  Two Spanish families with Charcot–Marie–Tooth type 2A: Clinical, electrophysiological and molecular findings , 2008, Neuromuscular Disorders.

[29]  P. Bernardi,et al.  Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria , 2008, Proceedings of the National Academy of Sciences.

[30]  J. Finsterer Leigh and Leigh-like syndrome in children and adults. , 2008, Pediatric neurology.

[31]  Jie Shen,et al.  Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress , 2008, Proceedings of the National Academy of Sciences.

[32]  Jan W. P. Kuiper,et al.  Creatine kinase B deficient neurons exhibit an increased fraction of motile mitochondria , 2008, BMC Neuroscience.

[33]  E. Chapman,et al.  Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+ , 2008, Nature Structural &Molecular Biology.

[34]  S. Dimauro,et al.  Mitochondrial disorders in the nervous system. , 2008, Annual review of neuroscience.

[35]  Richard J. Flannery,et al.  Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons , 2008, Proceedings of the National Academy of Sciences.

[36]  R. Schwarzenbacher,et al.  OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. , 2008, Brain : a journal of neurology.

[37]  Cuiling Li,et al.  Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation , 2008, Cell.

[38]  R. Myers,et al.  Mitochondrial involvement in psychiatric disorders , 2008, Annals of medicine.

[39]  P. Verstreken,et al.  FM 1-43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. , 2008, Methods in molecular biology.

[40]  D. Nicholls,et al.  Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity , 2007, Journal of neuroscience research.

[41]  S. Komoly,et al.  The involvement of mitochondria in the pathogenesis of multiple sclerosis , 2007, Journal of Neuroimmunology.

[42]  M. Frieden,et al.  Mitochondria and Ca2+ signaling: old guests, new functions , 2007, Pflügers Archiv - European Journal of Physiology.

[43]  M. Norenberg,et al.  The mitochondrial permeability transition in neurologic disease , 2007, Neurochemistry International.

[44]  J. García-Sancho,et al.  Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons , 2007, The Journal of physiology.

[45]  R. Rikhy,et al.  Mutations in dynamin‐related protein result in gross changes in mitochondrial morphology and affect synaptic vesicle recycling at the Drosophila neuromuscular junction , 2007, Genes, brain, and behavior.

[46]  M. Beal Mitochondria and neurodegeneration. , 2007, Novartis Foundation symposium.

[47]  Catarina Correia,et al.  Brief Report: High Frequency of Biochemical Markers for Mitochondrial Dysfunction in Autism: No Association with the Mitochondrial Aspartate/Glutamate Carrier SLC25A12 Gene , 2006, Journal of autism and developmental disorders.

[48]  S. Mironov,et al.  ER vesicles and mitochondria move and communicate at synapses , 2006, Journal of Cell Science.

[49]  G. Lnenicka,et al.  Ca2+ Dynamics along Identified Synaptic Terminals in Drosophila Larvae , 2006, The Journal of Neuroscience.

[50]  D. Turnbull,et al.  Molecular neuropathology of MELAS: level of heteroplasmy in individual neurones and evidence of extensive vascular involvement , 2006, Neuropathology and applied neurobiology.

[51]  E. Jonas BCL-xL regulates synaptic plasticity. , 2006, Molecular interventions.

[52]  P. Verstreken,et al.  Mitochondria at the Synapse , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[53]  D. Chan Mitochondria: Dynamic Organelles in Disease, Aging, and Development , 2006, Cell.

[54]  H. Peng,et al.  Mitochondrial clustering at the vertebrate neuromuscular junction during presynaptic differentiation. , 2006, Journal of neurobiology.

[55]  J. Geddes,et al.  Synaptic Mitochondria Are More Susceptible to Ca2+Overload than Nonsynaptic Mitochondria* , 2006, Journal of Biological Chemistry.

[56]  V. Wimmer,et al.  Donut-Like Topology of Synaptic Vesicles with a Central Cluster of Mitochondria Wrapped into Membrane Protrusions: A Novel Structure–Function Module of the Adult Calyx of Held , 2006, The Journal of Neuroscience.

[57]  John H. Gilmore,et al.  Apoptotic mechanisms and the synaptic pathology of schizophrenia , 2006, Schizophrenia Research.

[58]  Todd Sherer,et al.  Rotenone Model of Parkinson Disease , 2005, Journal of Biological Chemistry.

[59]  D. Chan,et al.  Emerging functions of mammalian mitochondrial fusion and fission. , 2005, Human molecular genetics.

[60]  Axel Niemann,et al.  Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network , 2005, The Journal of cell biology.

[61]  Qian Cai,et al.  Syntabulin-mediated anterograde transport of mitochondria along neuronal processes , 2005, The Journal of cell biology.

[62]  M. Charlton,et al.  The GTPase dMiro Is Required for Axonal Transport of Mitochondria to Drosophila Synapses , 2005, Neuron.

[63]  P. Verstreken,et al.  Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions , 2005, Neuron.

[64]  P. Hollenbeck Mitochondria and Neurotransmission: Evacuating the Synapse , 2005, Neuron.

[65]  Y. Kidokoro,et al.  Exocytosis and Endocytosis of Synaptic Vesicles and Functional Roles of Vesicle Pools: Lessons from the Drosophila Neuromuscular Junction , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[66]  M. Ramaswami,et al.  Analysis of Conditional Paralytic Mutants in Drosophila Sarco-Endoplasmic Reticulum Calcium ATPase Reveals Novel Mechanisms for Regulating Membrane Excitability , 2005, Genetics.

[67]  W. Betz,et al.  Synaptic vesicle pools , 2005, Nature Reviews Neuroscience.

[68]  G. Hajnóczky,et al.  Control of mitochondrial motility and distribution by the calcium signal , 2004, The Journal of cell biology.

[69]  R. Youle,et al.  Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. , 2004, Molecular biology of the cell.

[70]  K. Broadie,et al.  Cellular bases of activity-dependent paralysis in Drosophila stress-sensitive mutants. , 2004, Journal of neurobiology.

[71]  C. Woolf,et al.  Adult neuron survival strategies — slamming on the brakes , 2004, Nature Reviews Neuroscience.

[72]  Michael P. Sheetz,et al.  Axonal mitochondrial transport and potential are correlated , 2004, Journal of Cell Science.

[73]  M. Pericak-Vance,et al.  Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A , 2004, Nature Genetics.

[74]  T. Weber,et al.  Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs , 2004, Science.

[75]  Harvey T. McMahon,et al.  The dynamin superfamily: universal membrane tubulation and fission molecules? , 2004, Nature Reviews Molecular Cell Biology.

[76]  A. M. van der Bliek,et al.  Mitochondrial morphology is dynamic and varied , 2004, Molecular and Cellular Biochemistry.

[77]  P. De Camilli,et al.  Cell biology of the presynaptic terminal. , 2003, Annual review of neuroscience.

[78]  R. Rizzuto Calcium mobilization from mitochondria in synaptic transmitter release , 2003, The Journal of cell biology.

[79]  Feng Yang,et al.  Ca2+ influx–independent synaptic potentiation mediated by mitochondrial Na+-Ca2+ exchanger and protein kinase C , 2003, The Journal of cell biology.

[80]  M. Ramaswami,et al.  A temperature-sensitive allele of Drosophila sesB reveals acute functions for the mitochondrial adenine nucleotide translocase in synaptic transmission and dynamin regulation. , 2003, Genetics.

[81]  Gong Chen,et al.  Formation of an Endophilin-Ca2+ Channel Complex Is Critical for Clathrin-Mediated Synaptic Vesicle Endocytosis , 2003, Cell.

[82]  B. Oostra,et al.  DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism , 2003, Neurological Sciences.

[83]  E. Barrett,et al.  Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals , 2003, The Journal of physiology.

[84]  D. Selkoe Alzheimer's Disease Is a Synaptic Failure , 2002, Science.

[85]  Y. Kidokoro,et al.  Selective Replenishment of Two Vesicle Pools Depends on the Source of Ca2+ at the Drosophila Synapse , 2002, Neuron.

[86]  I. Forsythe,et al.  Presynaptic Mitochondrial Calcium Sequestration Influences Transmission at Mammalian Central Synapses , 2002, The Journal of Neuroscience.

[87]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[88]  K. Gunter,et al.  The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. , 2001, Biochimica et biophysica acta.

[89]  G. Hendricks,et al.  Presynaptic function is altered in snake K+‐depolarized motor nerve terminals containing compromised mitochondria , 2001, The Journal of physiology.

[90]  G. Spirou,et al.  Specialized Synapse-Associated Structures within the Calyx of Held , 2000, The Journal of Neuroscience.

[91]  Todd B. Sherer,et al.  Chronic systemic pesticide exposure reproduces features of Parkinson's disease , 2000, Nature Neuroscience.

[92]  K. Gunter,et al.  Mitochondrial calcium transport: mechanisms and functions. , 2000, Cell calcium.

[93]  Junying Yuan,et al.  Apoptosis in the nervous system , 2000, Nature.

[94]  J. Grosgeorge,et al.  Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy , 2000, Nature Genetics.

[95]  S. Bhattacharya,et al.  OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 , 2000, Nature Genetics.

[96]  S. Dimauro,et al.  Kearns–Sayre syndrome: oncocytic transformation of choroid plexus epithelium , 2000, Journal of the Neurological Sciences.

[97]  J. Hachisuka,et al.  Functional Coupling of Ca2+ Channels to Ryanodine Receptors at Presynaptic Terminals , 2000, The Journal of General Physiology.

[98]  J. Hachisuka,et al.  Functional coupling of Ca(2+) channels to ryanodine receptors at presynaptic terminals. Amplification of exocytosis and plasticity. , 2000, The Journal of general physiology.

[99]  G. Matthews,et al.  The Role of Mitochondria in Presynaptic Calcium Handling at a Ribbon Synapse , 2000, Neuron.

[100]  J. García-Sancho,et al.  Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion , 2000, Nature Cell Biology.

[101]  T. Pozzan,et al.  Mitochondria as biosensors of calcium microdomains. , 1999, Cell calcium.

[102]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[103]  L. Brodin,et al.  Presynaptic mitochondria and the temporal pattern of neurotransmitter release. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[104]  L. Brodin,et al.  Dissociation between Ca2+-Triggered Synaptic Vesicle Exocytosis and Clathrin-Mediated Endocytosis at a Central Synapse , 1998, Neuron.

[105]  W G Regehr,et al.  Calcium Dependence and Recovery Kinetics of Presynaptic Depression at the Climbing Fiber to Purkinje Cell Synapse , 1998, The Journal of Neuroscience.

[106]  Leonard K. Kaczmarek,et al.  High-frequency firing helps replenish the readily releasable pool of synaptic vesicles , 1998, Nature.

[107]  P. Nguyen,et al.  Synaptic physiology and mitochondrial function in crayfish tonic and phasic motor neurons. , 1997, Journal of neurophysiology.

[108]  D. Guerini Calcineurin: not just a simple protein phosphatase. , 1997, Biochemical and biophysical research communications.

[109]  R. Zucker,et al.  Mitochondrial Involvement in Post-Tetanic Potentiation of Synaptic Transmission , 1997, Neuron.

[110]  D. A. Clayton,et al.  In situ localization of mitochondrial DNA replication in intact mammalian cells , 1996, The Journal of cell biology.

[111]  J. T. Greenamyre,et al.  Bioenergetics and glutamate excitotoxicity , 1996, Progress in Neurobiology.

[112]  Greenamyre Jt,et al.  Bioenergetics and glutamate excitotoxicity. , 1996 .

[113]  Peter N. Campbell,et al.  Biochemistry (2nd edn) , 1995 .

[114]  M E Greenberg,et al.  Calcium signaling in neurons: molecular mechanisms and cellular consequences. , 1995, Science.

[115]  S. Schmid,et al.  Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding , 1995, Nature.

[116]  T. Südhof,et al.  Synaptotagmin: a calcium sensor on the synaptic vesicle surface. , 1992, Science.

[117]  M. Duchen,et al.  Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. , 1992, The Biochemical journal.

[118]  Wade K. Smith,et al.  Midbrain dopaminergic cell loss in parkinson's disease: Computer visualization , 1989, Annals of neurology.

[119]  H. Atwood,et al.  Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses. , 1986, International review of neurobiology.

[120]  A. Mazur,et al.  Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction , 1980, The Journal of cell biology.

[121]  E. Racker,et al.  Components and mechanism of action of ATP-driven proton pumps. , 1979, Canadian journal of biochemistry.

[122]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[123]  S. Palay SYNAPSES IN THE CENTRAL NERVOUS SYSTEM , 1956, The Journal of biophysical and biochemical cytology.