Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping

We demonstrate that with only 1 μm, equivalent bulk thickness, of crystalline silicon, sculpted into the form of a slanted conical-pore photonic crystal and placed on a silver back-reflector, it is possible to attain a maximum achievable photocurrent density (MAPD) of 35.5 mA/cm2 from impinging sunlight. This corresponds to absorbing roughly 85% of all available sunlight in the wavelength range of 300–1100 nm and exceeds the limits suggested by previous “statistical ray trapping” arguments. Given the AM 1.5 solar spectrum and the intrinsic absorption characteristics of silicon, the optimum carrier generation occurs for a photonic crystal square lattice constant of 850 nm and slightly overlapping inverted cones with upper (base) radius of 500 nm. This provides a graded refractive index profile with good anti-reflection behavior. Light trapping is enhanced by tilting each inverted cone such that one side of each cone is tangent to the plane defining the side of the elementary cell. When the solar cell is packaged with silica (each pore filled with SiO2), the MAPD in the wavelength range of 400–1100 nm becomes 32.6 mA/cm2 still higher than the Lambertian 4n2 benchmark of 31.2 mA/cm2. In the near infrared regime from 800 to 1100 nm, our structure traps and absorbs light within slow group velocity modes, which propagate nearly parallel to the solar cell interface and exhibit localized high intensity vortex-like flow in the Poynting vector-field. In this near infrared range, our partial MAPD is 10.9 mA/cm2 compared to a partial MAPD of 7 mA/cm2 based on “4n2 statistical ray trapping.” These results suggest silicon solar cell efficiencies exceeding 20% with just 1 μm of silicon.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  Xiang Zhang,et al.  Solar energy enhancement using down-converting particles: A rigorous approach , 2011 .

[3]  Guillaume Demésy,et al.  Solar energy trapping with modulated silicon nanowire photonic crystals , 2012 .

[4]  James G. Mutitu,et al.  Thin film solar cell design based on photonic crystal and diffractive grating structures. , 2008, Optics express.

[5]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[6]  Young Min Song,et al.  Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement. , 2010, Optics letters.

[7]  G. Franceschetti,et al.  Scattering from wedge-tapered absorbers , 1971 .

[8]  S. John,et al.  Effective optical response of silicon to sunlight in the finite-difference time-domain method. , 2012, Optics letters.

[9]  A. Chutinan,et al.  Light trapping and absorption optimization in certain thin-film photonic crystal architectures , 2008 .

[10]  Sergey Eyderman,et al.  Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals , 2013 .

[11]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[12]  Jonathan Grandidier,et al.  Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.

[13]  Prudence M.J.H. Wormell,et al.  Handbook of optical engineering , 2002 .

[14]  Silvia Colodrero,et al.  Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells , 2010 .

[15]  Lorenzo Pavesi,et al.  Modeling of silicon nanocrystals based down-shifter for enhanced silicon solar cell performance , 2012 .

[16]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .

[17]  A. Deinega,et al.  Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method. , 2007, Optics Letters.

[18]  S. Chou,et al.  Ultrafast and direct imprint of nanostructures in silicon , 2002, Nature.

[19]  A. Deinega,et al.  Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method. , 2008, Optics letters.

[20]  G. Ozin,et al.  Tailoring the Electrical Properties of Inverse Silicon Opals ‐ A Step Towards Optically Amplified Silicon Solar Cells , 2009, Advanced materials.

[21]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[22]  Ali Naqavi,et al.  Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture , 2011 .

[23]  Aasmund Sudbø,et al.  Comparison of periodic light-trapping structures in thin crystalline silicon solar cells , 2011 .

[24]  S. John Electromagnetic absorption in a disordered medium near a photon mobility edge , 1984 .

[25]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[26]  Teng‐Ming Chen,et al.  Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb,R (R=Er, Ho) phosphors , 2011 .

[27]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[28]  S. John,et al.  Solar power conversion efficiency in modulated silicon nanowire photonic crystals , 2012 .

[29]  A. Kandala,et al.  General theoretical considerations on nanowire solar cell designs , 2009 .

[30]  B. L. Sopori,et al.  Design of antireflection coatings for textured silicon solar cells , 1983 .

[31]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[32]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[33]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[34]  M. Green,et al.  Optical properties of intrinsic silicon at 300 K , 1995 .

[35]  Paul T. Miclea,et al.  3D photonic crystals for ultra-light trapping in solar cells , 2008, Photonics Europe.

[36]  Zhongyi Guo,et al.  A strong antireflective solar cell prepared by tapering silicon nanowires. , 2010, Optics express.

[37]  C. Bernhard,et al.  Structural and functional adaptation in a visual system - Strukturelle und funktionelle Adaptation in einem visuellen System , 1967 .

[38]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[39]  Sergey Belousov,et al.  Implementation of the iterative finite-difference time-domain technique for simulation of periodic structures at oblique incidence , 2014, Comput. Phys. Commun..

[40]  M. Hutley,et al.  Reduction of Lens Reflexion by the “Moth Eye” Principle , 1973, Nature.

[41]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[42]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[43]  G. M. Morris,et al.  Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles. , 1993, Applied optics.

[44]  Martin A. Green,et al.  Third generation photovoltaics , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).

[45]  B. Potapkin,et al.  Minimizing light reflection from dielectric textured surfaces. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[46]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[47]  E. Yablonovitch Statistical ray optics , 1982 .

[48]  G. Ozin,et al.  Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study. , 2010, Optics express.

[49]  Alexei Deinega,et al.  Long-time behavior of PML absorbing boundaries for layered periodic structures , 2011, Comput. Phys. Commun..