Probabilistic foundations for measurement modelling with fuzzy random variables

We propose fuzzy random variables as a tool for modelling measurements when both aleatory and fuzzy uncertainty have to be taken into account. Uncertainty propagation follows the ordinary scheme for the random part and uses a t-normed extension principle for the fuzzy part. We concentrate on the probabilistic theoretical underpinnings of the model, particularly limit theorems, and discuss their implications to the model.

[1]  Raghu N. Kacker,et al.  Bayesian alternative to the ISO-GUM's use of the Welch–Satterthwaite formula , 2006 .

[2]  G. Mauris,et al.  A fuzzy approach for the expression of uncertainty in measurement , 2001 .

[3]  D. Dubois,et al.  On Possibility/Probability Transformations , 1993 .

[4]  O. Artbauer Application of Interval, Statistical, and Fuzzy Methods to the Evaluation of Measurements , 1988 .

[5]  Alessandro Ferrero,et al.  A method based on random-fuzzy variables for online estimation of the measurement uncertainty of DSP-based instruments , 2004, IEEE Transactions on Instrumentation and Measurement.

[6]  Wolfgang Näther,et al.  On the variance of random fuzzy variables , 2002 .

[7]  Luca Mari,et al.  Logical and philosophical aspects of measurement , 2005 .

[8]  Yukio Ogura,et al.  Central limit theorems for generalized set-valued random variables , 2003 .

[9]  Dan A. Ralescu,et al.  Overview on the development of fuzzy random variables , 2006, Fuzzy Sets Syst..

[10]  Domenico Capriglione,et al.  Evaluation of the measurement uncertainties in the conducted emissions from adjustable speed electrical power drive systems , 2004, IEEE Transactions on Instrumentation and Measurement.

[11]  Michał K. Urbański,et al.  Fuzzy approach to the theory of measurement inexactness , 2003 .

[12]  Zhongyu Wang,et al.  Estimation of non-statistical uncertainty using fuzzy-set theory , 2000 .

[13]  Andrea Marková-Stupnanová $T$-law of large numbers for fuzzy numbers , 2000 .

[14]  Przemysław Grzegorzewski,et al.  Soft Methodology and Random Information Systems , 2004 .

[15]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[16]  Jay Verkuilen,et al.  Assigning Membership in a Fuzzy Set Analysis , 2005 .

[17]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[18]  On Limit Theorems for t-Normed Sums of Fuzzy Random Variables , 2004 .

[19]  Yukio Ogura,et al.  On Limit Theorems for Random Fuzzy Sets Including Large Deviation Principles , 2004 .

[20]  Dug Hun Hong,et al.  Equivalent conditions for laws of large numbers for T-related L-R fuzzy numbers , 2003, Fuzzy Sets Syst..

[21]  D. Ralescu,et al.  Statistical Modeling, Analysis and Management of Fuzzy Data , 2001 .

[22]  V. Kreinovich,et al.  Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables , 2002 .

[23]  Leon Jay Gleser,et al.  Assessing uncertainty in measurement , 1998 .

[24]  Michael Katz Łukasiewicz logic and the foundations of measurement , 1981 .

[25]  Roberto Tinarelli,et al.  An experimental comparison in the uncertainty estimation affecting wavelet-based signal analysis by means of the IEC-ISO guide and the random-fuzzy approaches , 2005, Proceedings of the 2005 IEEE International Workshop onAdvanced Methods for Uncertainty Estimation in Measurement, 2005..

[26]  Ilya Molchanov,et al.  The Law of Large Numbers in a Metric Space with a Convex Combination Operation , 2006 .

[27]  P M Harris,et al.  Software Support for Metrology Best Practice Guide No. 6. Uncertainty evaluation. , 2006 .

[28]  Michal K. Urbanski,et al.  Fuzzy Arithmetic Based On Boundary Weak T-Norms , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..