Multiscale analysis of the core nanotube in a nanocomposite system

Abstract Carbon nanotube reinforced polymer composites have novel properties that make them useful in a wide variety of applications and there has been numerous studies to predict the overall bulk properties of these nanocomposites. Theoretical studies to understand the properties of these nanomaterials consider the nanometer dimension of a nanotube and attempt to understand its interaction with a polymer chain thereby coupling the various length scales and time scales. In this paper, we estimate the properties of the central nanotube (neat or functionalized) which is embedded in a matrix material. The investigation of mechanical behavior of nanostructure materials is carried out using molecular dynamics (MD) simulations and these interactions are subsequently idealized into a homogenized model. The interactions of the molecules of the nanotube with the matrix usually creates an interphase layer which has reduced mobility. This paper also discusses the variation of the effective properties of the interphase region in a carbon nanotube reinforced nanocomposite system.

[1]  Susan B. Sinnott,et al.  Effect of chemical functionalization on the mechanical properties of carbon nanotubes , 1998 .

[2]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[3]  J. Reddy,et al.  Constitutive material modeling of cell: a micromechanics approach. , 2007, Journal of biomechanical engineering.

[4]  W. Brostow,et al.  Molecular-dynamics simulations of stress relaxation in metals and polymers. , 1994, Physical review. B, Condensed matter.

[5]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[6]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[7]  Chuck Zhang,et al.  Computational analysis of effect of single-walled carbon nanotube rope on molecular interaction and load transfer of nanocomposites , 2005 .

[8]  Andris Chate,et al.  Effect of interphase on the transverse Young's modulus of glass/epoxy composites , 1998 .

[9]  Dong Qian,et al.  Load transfer mechanism in carbon nanotube ropes , 2003 .

[10]  J. Margrave,et al.  Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications , 2005 .

[11]  R. D. Bradshaw,et al.  Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor , 2003, Composites Science and Technology.

[12]  S. Namilae,et al.  Mechanical behavior of functionalized nanotubes , 2004 .

[13]  M. Nardelli,et al.  Ultimate strength of carbon nanotubes: A theoretical study , 2002 .

[14]  Madhu Menon,et al.  Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect , 2001 .

[15]  J. Reddy,et al.  Characteristics of Silicon-Doped CNT-Reinforced Nanocomposites , 2005 .

[16]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[17]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[18]  J. N. Reddy,et al.  An Introduction to CONTINUUM MECHANICS with Applications , 2007 .

[19]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[20]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[21]  Studies of fullerenes and carbon nanotubes by an extended bond order potential , 1999 .

[22]  A. Miravete,et al.  Mechanical Characterization of Carbon Nanotube Composite Materials , 2005 .

[23]  Paul Calvert,et al.  Nanotube composites: A recipe for strength , 1999, Nature.

[24]  F. Yuan,et al.  Simulation of elastic properties of single-walled carbon nanotubes , 2003 .

[25]  Michael Griebel,et al.  Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites , 2004 .

[26]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[27]  M. Shaffer,et al.  Crystallization of Carbon Nanotube and Nanofiber Polypropylene Composites , 2003 .

[28]  R. Batra,et al.  Macroscopic properties of carbon nanotubes from molecular-mechanics simulations , 2004 .

[29]  C. Özdogan,et al.  Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain , 2003, cond-mat/0303391.

[30]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[31]  S. Namilae,et al.  Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects , 2004 .

[32]  Frank T. Fisher,et al.  Direct Observation of Polymer Sheathing in Carbon Nanotube-Polycarbonate Composites , 2003 .

[33]  Liangchi Zhang,et al.  Nanotube functionalization and polymer grafting: An ab initio study , 2004 .

[34]  Kyeongjae Cho,et al.  Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites , 2002, cond-mat/0203349.

[35]  Oscar Lopez-Pamies,et al.  Homogenization estimates for fiber-reinforced elastomers with periodic microstructures , 2007 .

[36]  Donald W. Brenner,et al.  The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation , 2003 .

[37]  Vasyl Harik,et al.  Mechanics of carbon nanotubes: applicability of the continuum-beam models , 2002 .