Stochastic approach to model spot price and value forward contracts on energy markets under uncertainty

The paper deals with a model of electricity spot prices. The proposed dynamics of electricity spot prices is driven by a mean reverting diffusion with jumps having hyperexponential distribution. The analytical formula for the forward contract’s price is derived in a crisp case. Inasmuch as the model parameters are considered to be evaluated imprecisely, their fuzzy counterparts are introduced. With usage of the fuzzy arithmetic, the analytical expression for the forward contract’s price is derived. Several numerical examples highlighting attributes of the fuzzy forward electricity prices are brought out.

[1]  Joanna Janczura,et al.  An empirical comparison of alternate regime-switching models or electricity spot prices , 2010 .

[2]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning - II , 1975, Inf. Sci..

[3]  Esfandiar Eslami,et al.  PRICING STOCK OPTIONS USING FUZZY SETS , 2007 .

[4]  A. M. Gil-Lafuente Fuzzy Logic in Financial Analysis , 2005 .

[5]  Qin Shang,et al.  Fuzzy pricing of binary option based on the long memory property of financial markets , 2020, J. Intell. Fuzzy Syst..

[6]  Konstantinos A. Chrysafis,et al.  On theoretical pricing of options with fuzzy estimators , 2009 .

[7]  Michal Pawlowski,et al.  Option Pricing With Application of Levy Processes and the Minimal Variance Equivalent Martingale Measure Under Uncertainty , 2017, IEEE Transactions on Fuzzy Systems.

[8]  Jianmin He,et al.  A geometric Levy model for n-fold compound option pricing in a fuzzy framework , 2016, J. Comput. Appl. Math..

[9]  Yuexu Zhao,et al.  Option pricing in Markov-modulated exponential Lévy models with stochastic interest rates , 2019, J. Comput. Appl. Math..

[10]  The Risk Premium and the Esscher Transform in Power Markets , 2012 .

[11]  A. Nazarova,et al.  A Critical Empirical Study of Three Electricity Spot Price Models , 2011 .

[12]  Erik Lindström,et al.  Modeling extreme dependence between European electricity markets , 2012 .

[13]  A. Thavaneswaran,et al.  Option valuation model with adaptive fuzzy numbers , 2007, Comput. Math. Appl..

[14]  Ethem Çanakoglu,et al.  Comparison of Electricity Spot Price Modelling and Risk Management Applications , 2020, Energies.

[15]  Yaming Zhuang,et al.  The Total Return Swap Pricing Model under Fuzzy Random Environments , 2017 .

[16]  Hua Li,et al.  The application of nonlinear fuzzy parameters PDE method in pricing and hedging European options , 2018, Fuzzy Sets Syst..

[17]  Á. Cartea,et al.  Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality , 2005 .

[18]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[19]  Shenghong Li,et al.  Pricing European-Style Options in General Lévy Process with Stochastic Interest Rate , 2020, Mathematics.

[20]  Griselda Deelstra,et al.  Multivariate European option pricing in a Markov-modulated Lévy framework , 2017, J. Comput. Appl. Math..

[21]  Sheng-hong Li,et al.  European option pricing model in a stochastic and fuzzy environment , 2013 .

[22]  Weijun Xu,et al.  The Fuzzy Jump-Diffusion Model to Pricing European Vulnerable Options , 2013 .

[23]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[24]  Xiandong Wang,et al.  Reload option pricing in fuzzy framework , 2014 .

[25]  Anja Feldmann,et al.  Fitting Mixtures of Exponentials to Long-Tail Distributions to Analyze Network , 1998, Perform. Evaluation.

[26]  Maciej Romaniuk,et al.  Application of Levy processes and Esscher transformed martingale measures for option pricing in fuzzy framework , 2014, J. Comput. Appl. Math..

[27]  Marta Biancardi,et al.  A fuzzy approach for R&D compound option valuation , 2017, Fuzzy Sets Syst..

[28]  Maciej Romaniuk,et al.  Computing option price for Levy process with fuzzy parameters , 2010, Eur. J. Oper. Res..

[29]  N. Nomikos,et al.  Analysis of model implied volatility for jump diffusion models: Empirical evidence from the Nordpool market , 2010 .

[30]  Jorge de Andrés-Sánchez,et al.  Pricing European Options with Triangular Fuzzy Parameters: Assessing Alternative Triangular Approximations in the Spanish Stock Option Market , 2018, Int. J. Fuzzy Syst..

[31]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[32]  Shuang Chen,et al.  A generalized European option pricing model with risk management , 2020 .

[33]  Carlo Sgarra,et al.  The Risk Premium and the Esscher Transform in Power Markets , 2009 .

[34]  J. K. Dash,et al.  A new method to solve fuzzy stochastic finance problem , 2021 .

[35]  Maciej Romaniuk,et al.  A fuzzy approach to option pricing in a Levy process setting , 2013, Int. J. Appl. Math. Comput. Sci..

[36]  Huiming Zhang,et al.  Building Fuzzy Variance Gamma Option Pricing Models with Jump Levy Process , 2017, KES-IDT.

[37]  Yuji Yoshida,et al.  The valuation of European options in uncertain environment , 2003, Eur. J. Oper. Res..

[38]  Wei-guo Zhang,et al.  The double exponential jump diffusion model for pricing European options under fuzzy environments , 2012 .

[39]  Fred Espen Benth,et al.  THE NORMAL INVERSE GAUSSIAN DISTRIBUTION AND SPOT PRICE MODELLING IN ENERGY MARKETS , 2004 .

[40]  Yue Zhang,et al.  Fuzzy pricing of geometric Asian options and its algorithm , 2015, Appl. Soft Comput..

[41]  Huiming Zhang,et al.  A european call options pricing model using the infinite pure jump levy process in a fuzzy environment , 2018, IEEJ Transactions on Electrical and Electronic Engineering.

[42]  Piotr Nowak,et al.  ON JACOD–GRIGELIONIS CHARACTERISTICS FOR HILBERT SPACE VALUED SEMIMARTINGALES , 2002 .

[43]  Michal Pawlowski,et al.  Pricing European options under uncertainty with application of Levy processes and the minimal Lq equivalent martingale measure , 2019, J. Comput. Appl. Math..

[44]  Hsien-Chung Wu,et al.  Pricing European options based on the fuzzy pattern of Black-Scholes formula , 2004, Comput. Oper. Res..

[45]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[46]  R. Huisman,et al.  Option Formulas for Mean-Reverting Power Prices with Spikes , 2002 .

[47]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[48]  Silvia Muzzioli,et al.  A multiperiod binomial model for pricing options in a vague world , 2004 .

[49]  Gisella Facchinetti,et al.  Pricing of minimum guarantees in life insurance contracts with fuzzy volatility , 2017, Inf. Sci..

[50]  Eduardo S. Schwartz,et al.  Electricity Prices and Power Derivatives: Evidence from the Nordic Power Exchange , 2000 .

[51]  Krzysztof Piasecki On Imprecise Investment Recommendations , 2014 .

[52]  Zdenek Zmeskal,et al.  Generalised soft binomial American real option pricing model (fuzzy-stochastic approach) , 2010, Eur. J. Oper. Res..

[53]  H. Geman,et al.  Understanding the Fine Structure of Electricity Prices , 2004 .

[54]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..