pH-Sensitive Fluorescent Sensor for Fe(III) and Cu(II) Ions Based on Rhodamine B Acylhydrazone: Sensing Mechanism and Bioimaging in Living Cells

[1]  Thierry Ollevier,et al.  Electrosynthesis of Stabilized Diazo Compounds from Hydrazones. , 2022, Organic letters.

[2]  Thierry Ollevier,et al.  Catalytic Bismuth(V)-Mediated Oxidation of Hydrazones into Diazo Compounds. , 2022, Organic letters.

[3]  Guobing Yan,et al.  Radical coupling reactions of hydrazines via photochemical and electrochemical strategies , 2022, Organic Chemistry Frontiers.

[4]  Matloob Ahmad,et al.  Recent trends in the chemistry of Sandmeyer reaction: a review , 2021, Molecular diversity.

[5]  R. Ding,et al.  Intelligent anti-corrosion and corrosion detection coatings based on layered supramolecules intercalated by fluorescent off-on probes , 2021 .

[6]  Xu-Hui Zhao,et al.  Corrosion Monitoring Effect of Rhodamine-Ethylenediamine on Copper Relics under a Protective Coating , 2020, ACS omega.

[7]  M. Vinjamur,et al.  Fluorescence based corrosion detecting epoxy coating , 2020 .

[8]  Qing-Qing Fu,et al.  A novel highly selective colorimetric and “turn-on” fluorimetric chemosensor for detecting Hg2+ based on Rhodamine B hydrazide derivatives in aqueous media , 2019, Journal of Photochemistry and Photobiology A: Chemistry.

[9]  A. Phull,et al.  Synthesis and Studies on Photophysical Properties of Rhodamine Derivatives for Bioimaging Applications , 2019, Bulletin of the Korean Chemical Society.

[10]  Krishnendu Pramanik,et al.  Semi-quantitative colorimetric and supersensitive electrochemical sensors for mercury using rhodamine b hydrazide thio derivative , 2019, Journal of Molecular Liquids.

[11]  Xiaojun Peng,et al.  A novel rhodamine B-based "off-on'' fluorescent sensor for selective recognition of copper (II) ions. , 2018, Talanta.

[12]  J. Morales,et al.  Photophysical characterization of hydroxy and ethoxy phenalenone derivatives , 2018 .

[13]  K. Suksen,et al.  A rhodamine-triazole fluorescent chemodosimeter for Cu2+ detection and its application in bioimaging. , 2018, Luminescence : the journal of biological and chemical luminescence.

[14]  Baojing Zhou,et al.  Synthesis and evaluation of a novel rhodamine B-based ‘off-on’ fluorescent chemosensor for the selective determination of Fe3+ ions , 2017 .

[15]  John F. Callan,et al.  Iodinated cyanine dyes: a new class of sensitisers for use in NIR activated photodynamic therapy (PDT). , 2017, Chemical communications.

[16]  Duan-zhuo Li,et al.  A novel turn-on colorimetric and fluorescent sensor for Fe3+ and its application in living cells , 2017 .

[17]  L. Meng,et al.  A simple rhodamine hydrazide-based turn-on fluorescent probe for HOCl detection. , 2016, Luminescence : the journal of biological and chemical luminescence.

[18]  N. Ferlazzo,et al.  Natural iron chelators: Protective role in A549 cells of flavonoids-rich extracts of Citrus juices in Fe(3+)-induced oxidative stress. , 2016, Environmental toxicology and pharmacology.

[19]  G. Das,et al.  A turn-on Rhodamine B-indole based fluorogenic probe for selective sensing of trivalent ions , 2016 .

[20]  Chao-Ying Gao,et al.  Tetraphenylethene functionalized rhodamine chemosensor for Fe3+ and Cu2+ ions in aqueous media , 2016 .

[21]  Jinyi Wang,et al.  A new rhodamine-based chemosensor for turn-on fluorescent detection of Fe3+ , 2015 .

[22]  P. Karmakar,et al.  Morphology-directing synthesis of rhodamine-based fluorophore microstructures and application toward extra- and intracellular detection of Hg(2+). , 2015, ACS applied materials & interfaces.

[23]  A. Augustyniak Smart epoxy coatings for early detection of corrosion in steel and aluminum , 2014 .

[24]  Y. Meng,et al.  Detection and Inhibition of Refractory Steel Corrosion by Rhodamine-Based Compound , 2013 .

[25]  Liang Yang,et al.  A novel rhodamine-based colorimetric and fluorescent sensor for the dual-channel detection of Cu2+ and Fe3+ in aqueous solutions , 2013 .

[26]  J. Niu,et al.  A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media , 2013 .

[27]  M. Aschner,et al.  Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury , 2013, Neurochemistry International.

[28]  John C. Degenstein,et al.  Effects and Mechanism of Metal Chloride Salts on Pretreatment and Enzymatic Digestibility of Corn Stover , 2013 .

[29]  K. Mizuno,et al.  Absorption and Fluorescence Spectroscopic Properties of 1- and 1,4-Silyl-Substituted Naphthalene Derivatives , 2012, Molecules.

[30]  W. Ding,et al.  Trace Determination of Rhodamine B and Rhodamine 6G Dyes in Aqueous Samples by Solid-phase Extraction and High-performance Liquid Chromatography Coupled with Fluorescence Detection , 2012 .

[31]  R. Martínez‐Máñez,et al.  A new selective fluorogenic probe for trivalent cations. , 2012, Chemical communications.

[32]  Zhiqian Guo,et al.  A new rhodamine derivative bearing benzothiazole and thiocarbonyl moieties as a highly selective fluorescent and colorimetric chemodosimeter for Hg2 , 2012 .

[33]  W. Ming,et al.  Early Detection of Aluminum Corrosion via "Turn-on" Fluorescence in Smart Coatings , 2011 .

[34]  Xiaomei Yan,et al.  Sensitive and selective off-on rhodamine hydrazide fluorescent chemosensor for hypochlorous acid detection and bioimaging. , 2011, Talanta.

[35]  B. Steinberg,et al.  Lysosomal pH and analysis of the counter ion pathways that support acidification , 2011, The Journal of general physiology.

[36]  H. Jang,et al.  Protective mechanism of quercetin and rutin on 2,2'-azobis(2-amidinopropane)dihydrochloride or Cu2+-induced oxidative stress in HepG2 cells. , 2011, Toxicology in vitro : an international journal published in association with BIBRA.

[37]  S. Hell,et al.  Rhodamines NN: a novel class of caged fluorescent dyes. , 2010, Angewandte Chemie.

[38]  ChongWu,et al.  The synthesis of a rhodamine B schiff-base chemosensor and recognition properties for Fe3+ in neutral ethanol aqueous solution , 2010 .

[39]  Jong Seung Kim,et al.  A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. , 2010, Chemical communications.

[40]  John G. Tsavalas,et al.  Early detection of steel corrosion via "turn-on" fluorescence in smart epoxy coatings. , 2009, ACS applied materials & interfaces.

[41]  Yufang Xu,et al.  A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor. , 2009, The Journal of organic chemistry.

[42]  Ronald T Raines,et al.  Hydrolytic stability of hydrazones and oximes. , 2008, Angewandte Chemie.

[43]  Juyoung Yoon,et al.  A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. , 2008, Chemical Society reviews.

[44]  Huimin Ma,et al.  Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. , 2008, Chemical communications.

[45]  B. Yates,et al.  A mechanistic study on the oxidation of hydrazides: application to the tuberculosis drug isoniazid. , 2008, Chemical communications.

[46]  J. Noh,et al.  Rhodamine B Hydrazide Revisited: Chemodosimetric Hg 2+ -selective Signaling Behavior in Aqueous Environments , 2008 .

[47]  A. Tong,et al.  A new fluorescent probe of rhodamine B derivative for the detection of copper ion. , 2007, Talanta.

[48]  Fuyou Li,et al.  A selective turn-on fluorescent sensor for FeIII and application to bioimaging , 2007 .

[49]  T. Rouault The role of iron regulatory proteins in mammalian iron homeostasis and disease , 2006, Nature chemical biology.

[50]  H. Kozłowski,et al.  Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). , 2006, Chemical reviews.

[51]  Juyoung Yoon,et al.  A highly selective fluorescent chemosensor for Pb2+. , 2005, Journal of the American Chemical Society.

[52]  T. Dowling,et al.  Determination of Rhodamine 123 in cell lysate by HPLC with visible wavelength detection. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[53]  C. Chow,et al.  Copper toxicity, oxidative stress, and antioxidant nutrients. , 2003, Toxicology.

[54]  Xiao-Feng Yang,et al.  Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. , 2002, Talanta.

[55]  R. Braslau,et al.  Acyl hydrazines as precursors to acyl radicals , 2002 .

[56]  Luca Prodi,et al.  Luminescent chemosensors for transition metal ions , 2000 .

[57]  P. Aisen,et al.  Iron metabolism. , 1999, Current opinion in chemical biology.

[58]  A. W. Czarnik,et al.  A LONG-WAVELENGTH FLUORESCENT CHEMODOSIMETER SELECTIVE FOR CU(II) ION IN WATER , 1997 .

[59]  H. H. Hodgson The Sandmeyer reaction. , 1947, Chemical reviews.