ABC transporter architecture and regulatory roles of accessory domains

We present an overview of the architecture of ATP‐binding cassette (ABC) transporters and dissect the systems in core and accessory domains. The ABC transporter core is formed by the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) that constitute the actual translocator. The accessory domains include the substrate‐binding proteins, that function as high affinity receptors in ABC type uptake systems, and regulatory or catalytic domains that can be fused to either the TMDs or NBDs. The regulatory domains add unique functions to the transporters allowing the systems to act as channel conductance regulators, osmosensors/regulators, and assemble into macromolecular complexes with specific properties.

[1]  V. Schreiber,et al.  A new mechanism for the control of a prokaryotic transcriptional regulator: antagonistic binding of positive and negative effectors , 2000, Molecular microbiology.

[2]  E. Bremer,et al.  Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli , 1996, Journal of bacteriology.

[3]  P. Tai,et al.  Cys32 and His105 Are the Critical Residues for the Calcium-dependent Cysteine Proteolytic Activity of CvaB, an ATP-binding Cassette Transporter* , 2004, Journal of Biological Chemistry.

[4]  L. Heppel,et al.  Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. , 1974, The Journal of biological chemistry.

[5]  K. Marchal,et al.  Screening genomes of Gram-positive bacteria for double-glycine-motif-containing peptides. , 2004, Microbiology.

[6]  A. Nairn,et al.  Severed Channels Probe Regulation of Gating of Cystic Fibrosis Transmembrane Conductance Regulator by Its Cytoplasmic Domains , 2000, The Journal of general physiology.

[7]  P. Cresswell,et al.  The N‐terminal region of tapasin is required to stabilize the MHC class I loading complex , 1999, European journal of immunology.

[8]  J. Beckwith,et al.  Genetic analysis of membrane protein topology by a sandwich gene fusion approach. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Matthew P. Anderson,et al.  Effect of deleting the R domain on CFTR-generated chloride channels. , 1991, Science.

[10]  A. Evagelidis,et al.  Phosphorylation of CFTR by PKA promotes binding of the regulatory domain , 2005, The EMBO journal.

[11]  K. Kirk,et al.  Cysteine Substitutions Reveal Dual Functions of the Amino-terminal Tail in Cystic Fibrosis Transmembrane Conductance Regulator Channel Gating* , 2001, The Journal of Biological Chemistry.

[12]  D. Wiley,et al.  Identification of domain boundaries within the N‐termini of TAP1 and TAP2 and their importance in tapasin binding and tapasin‐mediated increase in peptide loading of MHC class I , 2005, Immunology and cell biology.

[13]  K. Kirk,et al.  A cluster of negative charges at the amino terminal tail of CFTR regulates ATP‐dependent channel gating , 2001, The Journal of physiology.

[14]  M. Welsh,et al.  Adenylate Kinase Activity in ABC Transporters* , 2005, Journal of Biological Chemistry.

[15]  I. Nes,et al.  The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. , 1994, Microbiology.

[16]  S. Cole,et al.  Role of the NH2-terminal membrane spanning domain of multidrug resistance protein 1/ABCC1 in protein processing and trafficking. , 2005, Molecular biology of the cell.

[17]  W. Boos,et al.  The ATP‐binding cassette subunit of the maltose transporter MalK antagonizes MalT, the activator of the Escherichia coli mal regulon , 1998, Molecular microbiology.

[18]  H. Shuman,et al.  Truncation of MalF Results in Lactose Transport via the Maltose Transport System of Escherichia coli * , 1998, The Journal of Biological Chemistry.

[19]  M. Knittler,et al.  Critical Role for the Tapasin-Docking Site of TAP2 in the Functional Integrity of the MHC Class I-Peptide-Loading Complex1 , 2005, The Journal of Immunology.

[20]  W. Boos,et al.  Learning new tricks from an old dog: MalT of the Escherichia coli maltose system is part of a complex regulatory network. , 2000, Trends in genetics : TIG.

[21]  C. Vandenberg,et al.  Transmembrane Topology of the Sulfonylurea Receptor SUR1* , 2001, The Journal of Biological Chemistry.

[22]  H. Nikaido,et al.  Interaction between maltose‐binding protein and the membrane‐associated maltose transporter complex in Escherichia coli , 1992, Molecular microbiology.

[23]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[24]  Karl Kuchler,et al.  ABC proteins : from bacteria to man , 2003 .

[25]  R. Tampé,et al.  The Binding Specificity of OppA Determines the Selectivity of the Oligopeptide ATP-binding Cassette Transporter* , 2004, Journal of Biological Chemistry.

[26]  S. Cole,et al.  Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. , 2005, Toxicology and applied pharmacology.

[27]  M. Klempner,et al.  Functional testing of putative oligopeptide permease (Opp) proteins of Borrelia burgdorferi: a complementation model in opp(-) Escherichia coli. , 2001, Biochimica et biophysica acta.

[28]  M. Mayer,et al.  Structure and function of glutamate receptor ion channels. , 2004, Annual review of physiology.

[29]  G. Venemâ,et al.  Membrane Topology of the Lactococcal Bacteriocin ATP-binding Cassette Transporter Protein LcnC , 1999, The Journal of Biological Chemistry.

[30]  Joseph F. Cotten,et al.  Cystic Fibrosis Transmembrane Conductance Regulator Cl− Channels with R Domain Deletions and Translocations Show Phosphorylation-dependent and -independent Activity* , 2001, The Journal of Biological Chemistry.

[31]  V. Schreiber,et al.  Self-association of the Escherichia coliTranscription Activator MalT in the Presence of Maltotriose and ATP* , 1999, The Journal of Biological Chemistry.

[32]  J. Blalock,et al.  CFTR chloride channel regulation by an interdomain interaction. , 1999, Science.

[33]  J A McCammon,et al.  Hinge-bending in L-arabinose-binding protein. The "Venus's-flytrap" model. , 1982, The Journal of biological chemistry.

[34]  T. Furukawa,et al.  Glutathione-dependent Binding of a Photoaffinity Analog of Agosterol A to the C-terminal Half of Human Multidrug Resistance Protein* , 2001, The Journal of Biological Chemistry.

[35]  E. Gouaux Structure and function of AMPA receptors , 2004, The Journal of physiology.

[36]  D. Taglicht,et al.  Comparative Topology Studies in Saccharomyces cerevisiae and in Escherichia coli , 1996, The Journal of Biological Chemistry.

[37]  J. Beckwith,et al.  Proper insertion of a complex membrane protein in the absence of its amino-terminal export signal. , 1991, The Journal of biological chemistry.

[38]  H. Shuman,et al.  Overproduction of MalK protein prevents expression of the Escherichia coli mal regulon , 1988, Journal of bacteriology.

[39]  G. Ames,et al.  Binding protein-independent histidine permease mutants. Uncoupling of ATP hydrolysis from transmembrane signaling. , 1991, The Journal of biological chemistry.

[40]  E. Dassa,et al.  The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. , 2001, Research in microbiology.

[41]  A. Evagelidis,et al.  Regulation of the CFTR channel by phosphorylation , 2001, Pflügers Archiv.

[42]  B. Poolman,et al.  Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms , 2005, Molecular microbiology.

[43]  R. Kolter,et al.  ABC transporters: bacterial exporters , 1993, Microbiological reviews.

[44]  A. Driessen,et al.  Diversity of transport mechanisms: common structural principles. , 2000, Trends in biochemical sciences.

[45]  E. Berger Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[46]  F. Quiocho,et al.  2 A resolution structure of DppA, a periplasmic dipeptide transport/chemosensory receptor. , 1995, Biochemistry.

[47]  D. Diep,et al.  A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export , 1995, Molecular microbiology.

[48]  M. Welsh,et al.  Structure and function of the CFTR chloride channel. , 1999, Physiological reviews.

[49]  W. Köster,et al.  Transmembrane topology of the two FhuB domains representing the hydrophobic components of bacterial ABC transporters involved in the uptake of siderophores, haem and vitamin B12. , 1998, Microbiology.

[50]  D. Logothetis,et al.  N‐terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits , 2003, The EMBO journal.

[51]  J. Tame,et al.  Crystal Structures of the Liganded and Unliganded Nickel-binding Protein NikA from Escherichia coli* , 2003, Journal of Biological Chemistry.

[52]  R. Evers,et al.  Role of the N-terminal Transmembrane Region of the Multidrug Resistance Protein MRP2 in Routing to the Apical Membrane in MDCKII Cells* , 2002, The Journal of Biological Chemistry.

[53]  F. Quiocho,et al.  A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. , 2003, Molecular cell.

[54]  D. Keppler,et al.  Structural requirements for the apical sorting of human multidrug resistance protein 2 (ABCC2). , 2002, European journal of biochemistry.

[55]  K. Linton,et al.  The ATP switch model for ABC transporters , 2004, Nature Structural &Molecular Biology.

[56]  D. Rees,et al.  The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Guillot,et al.  Osmoregulation in Lactococcus lactis: BusR, a transcriptional repressor of the glycine betaine uptake system BusA , 2003, Molecular microbiology.

[58]  W. Boos,et al.  The Aes Protein Directly Controls the Activity of MalT, the Central Transcriptional Activator of the Escherichia coliMaltose Regulon* , 2002, The Journal of Biological Chemistry.

[59]  W. Coetzee,et al.  The Glycolytic Enzymes, Glyceraldehyde-3-phosphate Dehydrogenase, Triose-phosphate Isomerase, and Pyruvate Kinase Are Components of the KATP Channel Macromolecular Complex and Regulate Its Function* , 2005, Journal of Biological Chemistry.

[60]  B. Poolman,et al.  ABC transporters: one, two or four extracytoplasmic substrate‐binding sites? , 2002, EMBO reports.

[61]  J. Bryan,et al.  Toward linking structure with function in ATP-sensitive K+ channels. , 2004, Diabetes.

[62]  K. Nikaido,et al.  Liganded and Unliganded Receptors Interact with Equal Affinity with the Membrane Complex of Periplasmic Permeases, a Subfamily of Traffic ATPases* , 1996, The Journal of Biological Chemistry.

[63]  J. Clancy,et al.  A macromolecular complex of β2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  S. Cole,et al.  The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. , 2004, Current drug metabolism.

[65]  O. Danot A complex signaling module governs the activity of MalT, the prototype of an emerging transactivator family. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[66]  H. Shuman,et al.  Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system , 1985, Journal of bacteriology.

[67]  W. Goebel,et al.  Topological and functional studies on HlyB of Escherichia coli , 1992, Molecular and General Genetics MGG.

[68]  A. Nairn,et al.  Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. , 1999, Physiological reviews.

[69]  Jue Chen,et al.  ATP-binding cassette transporters in bacteria. , 2004, Annual review of biochemistry.

[70]  B. Poolman,et al.  On the role of the two extracytoplasmic substrate‐binding domains in the ABC transporter OpuA , 2003, The EMBO journal.

[71]  F. Quiocho,et al.  Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes , 1996, Molecular microbiology.

[72]  G N Murshudov,et al.  The structural basis of sequence-independent peptide binding by OppA protein. , 1994, Science.

[73]  J. Vandekerckhove,et al.  Characterization of the ABCA transporter subfamily: identification of prokaryotic and eukaryotic members, phylogeny and topology. , 2003, Journal of molecular biology.

[74]  P. Postma,et al.  Interactions in vivo between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and the glycerol and maltose uptake systems of Salmonella typhimurium. , 1984, European journal of biochemistry.

[75]  B. Poolman,et al.  On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine , 2001, The EMBO journal.

[76]  M. Hermodson,et al.  Topology of RbsC, the Membrane Component of the Escherichia coli Ribose Transporter , 2003, Journal of bacteriology.

[77]  L. Molday,et al.  Membrane Topology of the ATP Binding Cassette Transporter ABCR and Its Relationship to ABC1 and Related ABCA Transporters , 2001, The Journal of Biological Chemistry.

[78]  C. Panagiotidis,et al.  Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter. , 1994, The EMBO journal.

[79]  Geoffrey Chang,et al.  Structure of MsbA from Vibrio cholera: a multidrug resistance ABC transporter homolog in a closed conformation. , 2003, Journal of molecular biology.

[80]  G. Tusnády,et al.  Membrane topology distinguishes a subfamily of the ATP‐binding cassette (ABC) transporters , 1997, FEBS letters.

[81]  G. Szakács,et al.  Characterization of the amino-terminal regions in the human multidrug resistance protein (MRP1). , 2000, Journal of cell science.

[82]  M. Wick Living in the danger zone: innate immunity to Salmonella. , 2004, Current opinion in microbiology.

[83]  I. Holland,et al.  Random and directed mutagenesis to elucidate the functional importance of helix II and F-989 in the C-terminal secretion signal of Escherichia coli hemolysin , 1996, Journal of bacteriology.

[84]  K. Diederichs,et al.  Structural Model of MalK, the ABC Subunit of the Maltose Transporter of Escherichia coli , 2002, The Journal of Biological Chemistry.

[85]  V. Antonov,et al.  Reversible association as a possible regulatory mechanism for controlling the activity of the non-specific leucine-binding protein from Escherichia coli. , 1976, Advances in enzyme regulation.

[86]  Carsten Horn,et al.  A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A. , 2003, Journal of molecular biology.

[87]  F. Denizot,et al.  Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. , 2004, Biochemistry.

[88]  W. Boos,et al.  The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations , 1991, Journal of bacteriology.

[89]  E. Bohl,et al.  The inhibition of maltose transport by the unliganded form of the maltose-binding protein of Escherichia coli: experimental findings and mathematical treatment. , 1995, Journal of theoretical biology.

[90]  S. Cole,et al.  Characterization of Binding of Leukotriene C4 by Human Multidrug Resistance Protein 1 , 2001, The Journal of Biological Chemistry.

[91]  S. Cole,et al.  Identification of the structural and functional boundaries of the multidrug resistance protein 1 cytoplasmic loop 3. , 2003, Biochemistry.

[92]  G. Ames,et al.  Topology of the hydrophobic membrane-bound components of the histidine periplasmic permease. Comparison with other members of the family. , 1992, The Journal of biological chemistry.

[93]  D. Clarke,et al.  Determining the structure and mechanism of the human multidrug resistance P-glycoprotein using cysteine-scanning mutagenesis and thiol-modification techniques. , 1999, Biochimica et biophysica acta.

[94]  I. Nes,et al.  Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene , 1991, Journal of bacteriology.

[95]  C. Higgins,et al.  ABC transporters: from microorganisms to man. , 1992, Annual review of cell biology.

[96]  R. Tampé,et al.  Function of the transport complex TAP in cellular immune recognition. , 1999, Biochimica et biophysica acta.

[97]  Chankyu Park,et al.  Molecular interactions in ribose transport: the binding protein module symmetrically associates with the homodimeric membrane transporter , 1999, The EMBO journal.

[98]  R. Poole,et al.  Membrane topology and mutational analysis of Escherichia coli CydDC, an ABC-type cysteine exporter required for cytochrome assembly. , 2004, Microbiology.

[99]  A. Babenko,et al.  The C Terminus of SUR1 Is Required for Trafficking of KATP Channels* , 1999, The Journal of Biological Chemistry.

[100]  W. Saurin,et al.  Sequence relationships between integral inner membrane proteins of binding protein‐dependent transport systems: Evolution by recurrent gene duplications , 1994, Protein science : a publication of the Protein Society.

[101]  E. Dassa,et al.  Membrane topology of MaIG, an inner membrane protein from the maltose transport system of Escherichia coli , 1993 .

[102]  E. Mikhailova,et al.  Molecular structure of the glibenclamide binding site of the β‐cell KATP channel , 2001 .

[103]  Chankyu Park,et al.  Topology of RbsC, a Membrane Component of the Ribose Transporter, Belonging to the AraH Superfamily , 1999, Journal of bacteriology.

[104]  A. Naren,et al.  Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. , 2005, Pharmacology & therapeutics.

[105]  D. Morrison,et al.  Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family , 1991, Journal of bacteriology.

[106]  W. Guggino,et al.  Accessory Protein Facilitated CFTR-CFTR Interaction, a Molecular Mechanism to Potentiate the Chloride Channel Activity , 2000, Cell.

[107]  G. Richarme Associative properties of the Escherichia coli galactose-binding protein and maltose-binding protein. , 1982, Biochimica et biophysica acta.

[108]  D. Callaway,et al.  Ezrin Controls the Macromolecular Complexes Formed between an Adapter Protein Na+/H+ Exchanger Regulatory Factor and the Cystic Fibrosis Transmembrane Conductance Regulator* , 2005, Journal of Biological Chemistry.

[109]  J. Beckwith,et al.  Determinants of membrane protein topology. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[110]  B. Poolman,et al.  A sensor for intracellular ionic strength. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[111]  G. Szakács,et al.  Functional Multidrug Resistance Protein (MRP1) Lacking the N-terminal Transmembrane Domain* , 1998, The Journal of Biological Chemistry.

[112]  W. Boos,et al.  The Dimer of the Escherichia coli Galactose-Binding Protein , 1976 .

[113]  A. Driessen,et al.  Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[114]  B. Poolman,et al.  Kinetics and consequences of binding of nona- and dodecapeptides to the oligopeptide binding protein (OppA) of Lactococcus lactis. , 1999, Biochemistry.

[115]  M. Saier,et al.  Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. , 1990, The Journal of biological chemistry.

[116]  A. Babenko,et al.  SUR Domains That Associate with and Gate KATP Pores Define a Novel Gatekeeper* , 2003, Journal of Biological Chemistry.

[117]  H. A. Berger,et al.  Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. , 1993, The Journal of biological chemistry.

[118]  T. Litman,et al.  Identification of Intra- and Intermolecular Disulfide Bridges in the Multidrug Resistance Transporter ABCG2* , 2005, Journal of Biological Chemistry.

[119]  G. Tusnády,et al.  Membrane Topology and Glycosylation of the Human Multidrug Resistance-associated Protein (*) , 1996, The Journal of Biological Chemistry.

[120]  A. Wilkinson,et al.  The structure of the oligopeptide-binding protein, AppA, from Bacillus subtilis in complex with a nonapeptide. , 2005, Journal of molecular biology.

[121]  B. Poolman,et al.  Wil N. Konings and Bert Poolman of the Oligopeptide Transport System of Specificity Mutants of the Binding Protein , 1999 .

[122]  R. Tampé,et al.  Functional Dissection of the Transmembrane Domains of the Transporter Associated with Antigen Processing (TAP)* , 2004, Journal of Biological Chemistry.

[123]  John F. Hunt,et al.  Crystal Structures of the BtuF Periplasmic-binding Protein for Vitamin B12 Suggest a Functionally Important Reduction in Protein Mobility upon Ligand Binding* , 2003, The Journal of Biological Chemistry.

[124]  D. Oxender,et al.  Membrane transport proteins. , 1974, Biomembranes.

[125]  C. B. Roth,et al.  Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. , 2001, Science.

[126]  J. Claverys,et al.  Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positive Streptococcus pneumoniae. , 1994, Journal of molecular biology.

[127]  Douglas C. Rees,et al.  The E. coli BtuCD Structure: A Framework for ABC Transporter Architecture and Mechanism , 2002, Science.

[128]  T. Caldas,et al.  Chaperone Properties of the Bacterial Periplasmic Substrate-binding Proteins* , 1997, The Journal of Biological Chemistry.

[129]  E. Dassa,et al.  Membrane topology of MalG, an inner membrane protein from the maltose transport system of Escherichia coli. , 1993, Molecular microbiology.

[130]  F. Quiocho,et al.  Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity. , 2005, Biochemistry.

[131]  V. Heide Osmoregulated ABC transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane , 2000 .

[132]  H. Neu,et al.  The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. , 1965, The Journal of biological chemistry.

[133]  W. Boos,et al.  Gene regulation in prokaryotes by subcellular relocalization of transcription factors. , 2004, Current opinion in microbiology.

[134]  B. Dijkstra,et al.  Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations. , 2003, Journal of molecular biology.

[135]  R. Tampé,et al.  How do ABC transporters drive transport? , 2004, Biological chemistry.

[136]  J. Endicott,et al.  Characterization of the hemolysin transporter, HlyB, using an epitope insertion. , 1992, Journal of Biological Chemistry.

[137]  G. Ames,et al.  Salmonella typhimurium histidine periplasmic permease mutations that allow transport in the absence of histidine-binding proteins , 1991, Journal of bacteriology.

[138]  E. Mikhailova,et al.  Molecular structure of the glibenclamide binding site of the beta-cell K(ATP) channel. , 2001, FEBS letters.

[139]  S. Séror,et al.  Analysis of the membrane organization of an Escherichia coli protein translocator, HlyB, a member of a large family of prokaryote and eukaryote surface transport proteins. , 1991, Journal of molecular biology.

[140]  S. Cole,et al.  Structure and expression of the messenger RNA encoding the murine multidrug resistance protein, an ATP-binding cassette transporter. , 1996, Molecular pharmacology.

[141]  J. Tavernier,et al.  Phosphorylation by Protein Kinase CK2 Modulates the Activity of the ATP Binding Cassette A1 Transporter* , 2004, Journal of Biological Chemistry.

[142]  Dieter Oesterhelt,et al.  A novel mode of sensory transduction in archaea: binding protein‐mediated chemotaxis towards osmoprotectants and amino acids , 2002, The EMBO journal.

[143]  J. Foskett,et al.  A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[144]  B. Poolman,et al.  Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[145]  G. Chang,et al.  Structure of the ABC Transporter MsbA in Complex with ADP·Vanadate and Lipopolysaccharide , 2005, Science.

[146]  M. P. Gallagher,et al.  Membrane topology of the integral membrane components, OppB and OppC, of the oligopeptide permease of Salmonella typhimurium , 1992, Molecular microbiology.

[147]  A. Babenko,et al.  SUR-dependent Modulation of KATP Channels by an N-terminal KIR6.2 Peptide , 2002, The Journal of Biological Chemistry.

[148]  Substrate Specificity and Ionic Regulation of GlnPQ from Lactococcus lactis , 2005, Journal of Biological Chemistry.

[149]  G. Ames,et al.  Reconstitution of the histidine periplasmic transport system in membrane vesicles. Energy coupling and interaction between the binding protein and the membrane complex. , 1989, The Journal of biological chemistry.

[150]  A. Pardee Membrane transport proteins. Proteins that appear to be parts of membrane transport systems are being isolated and characterized. , 1968, Science.