Continuous Nonsingular Terminal Sliding-Mode Control of Shape Memory Alloy Actuators Using Time Delay Estimation

We have developed a continuous nonsingular terminal sliding-mode control with time-delay estimation (TDE) for shape memory alloys (SMA) actuators. The proposed method does not need to describe a mathematical model of a hysteresis effect and other nonlinearities; thus, it is simple and model free. The proposed control consists of three elements that have clear meaning: a TDE element that cancels nonlinearities in the SMA dynamics, an injection element that specifies desired terminal sliding-mode (TSM) dynamics, and a reaching element using a fast terminal sliding manifold that is activated accordingly when the system trajectory is not confined in the TSM. The proposed control has been successfully implemented in an SMA actuated system and experimental results show the proposed control is easily implementable and highly accurate. Once the TSM and the reaching condition are suitably specified, the tracking performance of the proposed control is improved compared with a conventional time delay control with a linear error dynamics.

[1]  Qin Yan,et al.  Design and Implementation of a Lightweight Bioinspired Pectoral Fin Driven by SMA , 2014, IEEE/ASME Transactions on Mechatronics.

[2]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[3]  Kyoung Kwan Ahn,et al.  Feedforward Control of Shape Memory Alloy Actuators Using Fuzzy-Based Inverse Preisach Model , 2009, IEEE Transactions on Control Systems Technology.

[4]  Nguyen Trong Tai,et al.  Adaptive proportional?integral?derivative tuning sliding mode control for a shape memory alloy actuator , 2011 .

[5]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[6]  Ping Zhang,et al.  A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process , 2012 .

[7]  Jordan E. Massad,et al.  A homogenized free energy model for hysteresis in thin-film shape memory alloys , 2005 .

[8]  Kyu-Jin Cho,et al.  Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[9]  Jia-Yush Yen,et al.  Tracking Control of Shape-Memory-Alloy Actuators Based on Self-Sensing Feedback and Inverse Hysteresis Compensation , 2009, Sensors.

[10]  Maolin Jin,et al.  Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems , 2009 .

[11]  Gregory D. Buckner,et al.  Data-driven techniques to estimate parameters in the homogenized energy model for shape memory alloys , 2012 .

[12]  Zhihong Man,et al.  Continuous finite-time control for robotic manipulators with terminal sliding mode , 2003, Autom..

[13]  Maolin Jin,et al.  A Solution to the Accuracy/Robustness Dilemma in Impedance Control , 2009, IEEE/ASME Transactions on Mechatronics.

[14]  Rajnikant V. Patel,et al.  Modeling and Control of Shape Memory Alloy Actuators , 2008, IEEE Transactions on Control Systems Technology.

[15]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[16]  Chintae Choi,et al.  Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control , 2009, IEEE Transactions on Industrial Electronics.

[17]  Jinoh Lee,et al.  An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle , 2012 .

[18]  Wu-Chung Su,et al.  An O(T2) boundary layer in sliding mode for sampled-data systems , 2000, IEEE Trans. Autom. Control..

[19]  Gangbing Song,et al.  Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller , 2003 .

[20]  Vincent Hayward,et al.  Variable structure control of shape memory alloy actuators , 1997 .

[21]  F. Ghorbel,et al.  Differential hysteresis modeling of a shape memory alloy wire actuator , 2005, IEEE/ASME Transactions on Mechatronics.

[22]  M. D. Pierce,et al.  A Biologically Inspired Wet Shape Memory Alloy Actuated Robotic Pump , 2013, IEEE/ASME Transactions on Mechatronics.

[23]  M. Moallem,et al.  Application of shape memory alloy actuators for flexure control: theory and experiments , 2005, IEEE/ASME Transactions on Mechatronics.

[24]  Victor Etxebarria,et al.  Neural network-based micropositioning control of smart shape memory alloy actuators , 2008, Eng. Appl. Artif. Intell..

[25]  Byong-Ho Park,et al.  Laser-Machined Shape Memory Alloy Actuators for Active Catheters , 2007, IEEE/ASME Transactions on Mechatronics.

[26]  V. Haimo Finite time controllers , 1986 .

[27]  Wu-Chung Su,et al.  An Boundary Layer in Sliding Mode for Sampled-Data Systems , 2000 .

[28]  Xinghuo Yu,et al.  Fast terminal sliding-mode control design for nonlinear dynamical systems , 2002 .

[29]  Kamal Youcef-Toumi,et al.  Input/Output Linearization Using Time Delay Control , 1992 .

[30]  T. A. Lasky,et al.  Robust independent joint controller design for industrial robot manipulators , 1991 .

[31]  Kamal Youcef-Toumi,et al.  A Time Delay Controller for Systems with Unknown Dynamics , 1988, 1988 American Control Conference.

[32]  Xinghuo Yu,et al.  Terminal sliding mode control of MIMO linear systems , 1997 .

[33]  J. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1995, Proceedings of International Conference on Control Applications.

[34]  A.G. Alleyne,et al.  Modeling and control for smart Mesoflap aeroelastic control , 2004, IEEE/ASME Transactions on Mechatronics.

[35]  Ehsan Tarkesh Esfahani,et al.  Developing an Adaptive Controller for a Shape Memory Alloy Walking Assistive Device , 2010 .

[36]  Toshiro Higuchi,et al.  A Rotary Actuator Using Shape Memory Alloy (SMA) Wires , 2014, IEEE/ASME Transactions on Mechatronics.

[37]  Gabriele Gilardi,et al.  A shape memory alloy based tendon-driven actuation system for biomimetic artificial fingers, part II: modelling and control , 2009, Robotica.

[38]  O. Kaynak,et al.  Asymptotic stability and stabilisation of uncertain delta operator systems with time-varying delays , 2013 .

[39]  Hashem Ashrafiuon,et al.  Nonlinear Control of a Shape Memory Alloy Actuated Manipulator , 2002 .

[40]  M. Zak Terminal attractors for addressable memory in neural networks , 1988 .

[41]  R. J. Wood,et al.  An Origami-Inspired Approach to Worm Robots , 2013, IEEE/ASME Transactions on Mechatronics.

[42]  Nguyen Trong Tai,et al.  Output Feedback Direct Adaptive Controller for a SMA Actuator With a Kalman Filter , 2012, IEEE Transactions on Control Systems Technology.

[43]  E.T. Esfahani,et al.  Stable Walking Pattern for an SMA-Actuated Biped , 2007, IEEE/ASME Transactions on Mechatronics.

[44]  Eduardo A. Tannuri,et al.  Modeling, control and experimental validation of a novel actuator based on shape memory alloys , 2009 .

[45]  Maolin Jin,et al.  Robust Compliant Motion Control of Robot With Nonlinear Friction Using Time-Delay Estimation , 2008, IEEE Transactions on Industrial Electronics.

[46]  Steven X. Ding,et al.  Real-Time Implementation of Fault-Tolerant Control Systems With Performance Optimization , 2014, IEEE Transactions on Industrial Electronics.

[47]  Hartmut Logemann,et al.  A class of differential-delay systems with hysteresis: Asymptotic behaviour of solutions☆ , 2008 .

[48]  Maolin Jin,et al.  Precise tracking control of shape memory alloy actuator systems using hyperbolic tangential sliding mode control with time delay estimation , 2013 .

[49]  Tien-I Liu,et al.  Control of Shape Memory Alloy Actuators with a Neuro-fuzzy Feedforward Model Element , 2006, J. Intell. Manuf..