Hochschild cohomology of group extensions of quantum symmetric algebras

Quantum symmetric algebras (or noncommutative polynomial rings) arise in many places in mathematics. In this article we find the multiplicative structure of their Hochschild cohomology when the coefficients are in an arbitrary bimodule algebra. When this bimodule algebra is a finite group extension (under a diagonal action) of a quantum symmetric algebra, we give explicitly the graded vector space structure. This yields a complete description of the Hochschild cohomology ring of the corresponding skew group algebra.

[1]  J. J. Zhang,et al.  Shephard–Todd–Chevalley Theorem for Skew Polynomial Rings , 2008, 0806.3210.

[2]  A. Berenstein,et al.  Noncommutative Dunkl operators and braided Cherednik algebras , 2008, 0806.0867.

[3]  P. A. Bergh,et al.  Cohomology of twisted tensor products , 2008, 0803.3689.

[4]  K. Kürsten,et al.  An operator-theoretic approach to invariant integrals on quantum homogeneous SU n,1 -spaces , 2007 .

[5]  A. V. Shepler,et al.  Hochschild cohomology and graded Hecke algebras , 2006, math/0603231.

[6]  R. Anno Multiplicative structure on the Hochschild cohomology of crossed product algebras , 2005, math/0511396.

[7]  M. Farinati Hochschild duality, localization, and smash products , 2004, math/0409039.

[8]  Lionel Richard Hochschild homology and cohomology of some classical and quantum noncommutative polynomial algebras , 2004 .

[9]  V. Ginzburg,et al.  Poisson deformations of symplectic quotient singularities , 2002, math/0212279.

[10]  H. Schneider,et al.  Pointed Hopf algebras , 2001, math/0110136.

[11]  S. Majid Quantum groups and noncommutative geometry , 2000, hep-th/0006167.

[12]  A. Guichardet Homologie de hochschild des deformations quadratiques d’algebres de polynomes , 1998 .

[13]  J. Guccione,et al.  Hochschild and Cyclic Homology of Ore Extensions and Some Examples of Quantum Algebras , 1997 .

[14]  Wolfgang Soergel,et al.  Koszul Duality Patterns in Representation Theory , 1996 .

[15]  D. Ştefan Hochschild cohomology on Hopf Galois extensions , 1995 .

[16]  D. Gaitsgory,et al.  Poincaré–Birkhoff–Witt Theorem for Quadratic Algebras of Koszul Type , 1994, hep-th/9411113.

[17]  M. Wambst Complexes de Koszul quantiques , 1993 .

[18]  I︠u︡. I. Manin Quantum groups and non-commutative geometry , 1988 .

[19]  Murray Gerstenhaber,et al.  The Cohomology Structure of an Associative Ring , 1963 .