Analysis of the expression of Kv10.1 potassium channel in patients with brain metastases and glioblastoma multiforme: impact on survival

[1]  A. Butte,et al.  A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. , 2013, Cancer discovery.

[2]  Christer S. Ejsing,et al.  Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. , 2013, Cancer cell.

[3]  M. Weller,et al.  Glioma Cell Death Induced by Irradiation or Alkylating Agent Chemotherapy Is Independent of the Intrinsic Ceramide Pathway , 2013, PloS one.

[4]  L. Pardo,et al.  RNA interference with EAG1 enhances interferon gamma injury to glioma cells in vitro. , 2013, Anticancer research.

[5]  Linlang Guo,et al.  MiR-296-3p regulates cell growth and multi-drug resistance of human glioblastoma by targeting ether-à-go-go (EAG1). , 2013, European journal of cancer.

[6]  Hong-Zhuan Chen,et al.  Antidepressant desipramine leads to C6 glioma cell autophagy: implication for the adjuvant therapy of cancer. , 2013, Anti-cancer agents in medicinal chemistry.

[7]  M. Hammadi,et al.  Human ether à‐gogo K+ channel 1 (hEag1) regulates MDA‐MB‐231 breast cancer cell migration through Orai1‐dependent calcium entry , 2012, Journal of cellular physiology.

[8]  D. Zhong,et al.  Short Hairpin RNA (shRNA) Ether à go-go 1 (Eag1) Inhibition of Human Osteosarcoma Angiogenesis via VEGF/PI3K/AKT Signaling , 2012, International journal of molecular sciences.

[9]  J. Villano,et al.  Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. , 2012, Neuro-oncology.

[10]  M. Fraga,et al.  Frequent aberrant expression of the human ether à go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications , 2012, Journal of Molecular Medicine.

[11]  K. Sansuk,et al.  Approaches Targeting KV10.1 Open a Novel Window for Cancer Diagnosis and Therapy , 2012 .

[12]  Yeni Kim,et al.  The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. , 2011, Biochemical and biophysical research communications.

[13]  Yanjie Lu,et al.  Transcriptional and Post-Transcriptional Mechanisms for Oncogenic Overexpression of Ether À Go-Go K+ Channel , 2011, PloS one.

[14]  H. Sowter,et al.  The Eag potassium channel as a new prognostic marker in ovarian cancer , 2010, Diagnostic pathology.

[15]  L. Pardo,et al.  The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia , 2010, Molecular Cancer.

[16]  M. Weller,et al.  Lysosomal ceramide mediates gemcitabine-induced death of glioma cells , 2009, Journal of Molecular Medicine.

[17]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[18]  L. Pardo,et al.  Eag1 Expression Interferes with Hypoxia Homeostasis and Induces Angiogenesis in Tumors , 2008, Journal of Biological Chemistry.

[19]  L. Pardo,et al.  Eag1 potassium channel immunohistochemistry in the CNS of adult rat and selected regions of human brain , 2008, Neuroscience.

[20]  He-sheng Luo,et al.  Expression and Prognostic Roles of Eag1 in Resected Esophageal Squamous Cell Carcinomas , 2008, Digestive Diseases and Sciences.

[21]  L. Pardo,et al.  Eag1: an emerging oncological target. , 2008, Cancer research.

[22]  Walter Curran,et al.  A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. , 2008, International journal of radiation oncology, biology, physics.

[23]  L. Pardo,et al.  Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. , 2007, Cancer research.

[24]  He-sheng Luo,et al.  Aberrant expression of Eag1 potassium channels in gastric cancer patients and cell lines , 2007, Medical oncology.

[25]  P. An,et al.  Aberrant expression of ether à go-go potassium channel in colorectal cancer patients and cell lines. , 2007, World journal of gastroenterology.

[26]  L. Bubendorf,et al.  Expression of Voltage-Gated Potassium Channels in Human and Mouse Colonic Carcinoma , 2007, Clinical Cancer Research.

[27]  L. Pardo,et al.  Ether à go-go potassium channel expression in soft tissue sarcoma patients , 2006, Molecular Cancer.

[28]  L. Pardo,et al.  Overexpression of Eag1 potassium channels in clinical tumours , 2006, Molecular Cancer.

[29]  L. Pardo,et al.  Silencing the activity and proliferative properties of the human Eag1 potassium channel by RNA interference. VOLUME 281 (2006) PAGES 13030-13037 , 2006 .

[30]  L. Pardo,et al.  Silencing the Activity and Proliferative Properties of the Human EagI Potassium Channel by RNA Interference* , 2006, Journal of Biological Chemistry.

[31]  Frances M. Ashcroft,et al.  From molecule to malady , 2006, Nature.

[32]  D. Kendall,et al.  Chlorimipramine: a novel anticancer agent with a mitochondrial target. , 2005, Biochemical and biophysical research communications.

[33]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[34]  L. Pardo,et al.  Mechanism of Block of hEag1 K Channels by Imipramine and Astemizole , 2004 .

[35]  L. Pardo,et al.  Ether à go-go Potassium Channels as Human Cervical Cancer Markers , 2004, Cancer Research.

[36]  R. Kraft,et al.  Expression of ether à go-go potassium channels in human gliomas , 2004, Neuroscience Letters.

[37]  S. Heinemann,et al.  Effects of Imipramine on Ion Channels and Proliferation of IGR1 Melanoma Cells , 2002, The Journal of Membrane Biology.

[38]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[39]  Scar,et al.  Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. , 2000, The New England journal of medicine.

[40]  L. Pardo,et al.  Oncogenic potential of EAG K+ channels , 1999, The EMBO journal.

[41]  L. Pardo,et al.  Cell Cycle–related Changes in the Conducting Properties of r-eag K+ Channels , 1998, The Journal of cell biology.

[42]  L Gaspar,et al.  Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. , 1997, International journal of radiation oncology, biology, physics.

[43]  M. Volm,et al.  Reversal of doxorubicin-resistance in solid tumors by clomipramine. , 1995, In vivo.

[44]  K. Sansuk,et al.  Approaches targeting K(V)10.1 open a novel window for cancer diagnosis and therapy. , 2012, Current medicinal chemistry.

[45]  Abraham Weizman,et al.  Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines , 2007, Journal of Molecular Neuroscience.

[46]  R. Toillon,et al.  Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: possible involvement of a h-ether.a-gogo K+ channel. , 2001, Receptors & channels.

[47]  J. Depierre,et al.  The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL‐60 cells via caspase‐3 activation , 1999, Journal of biochemical and molecular toxicology.

[48]  S. Kaye,et al.  Circumvention of pleiotropic drug resistance in subcutaneous tumours in vivo with verapamil and clomipramine. , 1991, European journal of cancer.