Guaranteed and sharp a posteriori error estimates in isogeometric analysis
暂无分享,去创建一个
[1] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[2] Luca Dedè,et al. B-spline goal-oriented error estimators for geometrically nonlinear rods , 2012 .
[3] Sergey Repin,et al. A posteriori error estimation for nonlinear variational problems by duality theory , 2000 .
[4] Giancarlo Sangalli,et al. Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.
[5] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[6] T. Hughes,et al. B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .
[7] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[8] G. Sangalli,et al. IsoGeometric Analysis using T-splines , 2012 .
[9] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[10] Régis Duvigneau,et al. Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..
[11] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[12] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[13] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[14] Ping Wang,et al. Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..
[15] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[16] K. Johannessen. An adaptive isogeometric finite element analysis , 2009 .
[17] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[18] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[19] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[20] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[21] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[22] T. Hughes,et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .
[23] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[24] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[25] Johannes Kraus,et al. Algebraic multilevel iteration method for lowest order Raviart–Thomas space and applications , 2011 .
[26] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[27] Tom Lyche,et al. T-spline simplification and local refinement , 2004, ACM Trans. Graph..
[28] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[29] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[30] Sergey Repin,et al. Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems , 2009 .
[31] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[32] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[33] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[34] Cv Clemens Verhoosel,et al. Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .
[35] J. Kraus,et al. Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.
[36] Sergey I. Repin,et al. A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..
[37] Bert Jüttler,et al. Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis , 2011 .
[38] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[39] John A. Evans,et al. Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .
[40] C. V. Verhoosel,et al. Isogeometric analysis-based goal-oriented error estimation for free-boundary problems , 2011 .
[41] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[42] Régis Duvigneau,et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .
[43] Niels Leergaard Pedersen,et al. Discretizations in isogeometric analysis of Navier-Stokes flow , 2011 .
[44] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[45] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[46] Tom Lyche,et al. Locally Refinable Splines over Box-Partitions , 2012 .
[47] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[48] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[49] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[50] J. Kraus,et al. Algebraic multilevel preconditioning in isogeometric analysis: Construction and numerical studies , 2013, 1304.0403.
[51] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[52] Sergey Repin,et al. A posteriori error estimates for approximate solutions to variational problems with strongly convex functionals , 1999 .