Guaranteed and sharp a posteriori error estimates in isogeometric analysis

We present functional-type a posteriori error estimates in isogeometric analysis. These estimates, derived on functional grounds, provide guaranteed and sharp upper bounds of the exact error in the energy norm. Moreover, since these estimates do not contain any unknown/generic constants, they are fully computable, and thus provide quantitative information on the error. By exploiting the properties of non-uniform rational B-splines, we present efficient computation of these error estimates. The numerical realization and the quality of the computed error distribution are addressed. The potential and the limitations of the proposed approach are illustrated using several computational examples.

[1]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[2]  Luca Dedè,et al.  B-spline goal-oriented error estimators for geometrically nonlinear rods , 2012 .

[3]  Sergey Repin,et al.  A posteriori error estimation for nonlinear variational problems by duality theory , 2000 .

[4]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[5]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[6]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[7]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[8]  G. Sangalli,et al.  IsoGeometric Analysis using T-splines , 2012 .

[9]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[10]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..

[11]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[12]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[13]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[14]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[15]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[16]  K. Johannessen An adaptive isogeometric finite element analysis , 2009 .

[17]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[18]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[19]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[20]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[21]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[22]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[23]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[24]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[25]  Johannes Kraus,et al.  Algebraic multilevel iteration method for lowest order Raviart–Thomas space and applications , 2011 .

[26]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[27]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[28]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[29]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[30]  Sergey Repin,et al.  Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems , 2009 .

[31]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[32]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[33]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[34]  Cv Clemens Verhoosel,et al.  Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .

[35]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[36]  Sergey I. Repin,et al.  A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..

[37]  Bert Jüttler,et al.  Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis , 2011 .

[38]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[39]  John A. Evans,et al.  Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .

[40]  C. V. Verhoosel,et al.  Isogeometric analysis-based goal-oriented error estimation for free-boundary problems , 2011 .

[41]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[42]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[43]  Niels Leergaard Pedersen,et al.  Discretizations in isogeometric analysis of Navier-Stokes flow , 2011 .

[44]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[45]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[46]  Tom Lyche,et al.  Locally Refinable Splines over Box-Partitions , 2012 .

[47]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[50]  J. Kraus,et al.  Algebraic multilevel preconditioning in isogeometric analysis: Construction and numerical studies , 2013, 1304.0403.

[51]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[52]  Sergey Repin,et al.  A posteriori error estimates for approximate solutions to variational problems with strongly convex functionals , 1999 .