Color-opponent receptive fields derived from independent component analysis of natural images

[1]  N. Daw Colour‐coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli , 1968, The Journal of physiology.

[2]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[3]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[4]  P Gouras,et al.  Opponent‐colour cells in different layers of foveal striate cortex , 1974, The Journal of physiology.

[5]  C. R. Michael Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. , 1978, Journal of neurophysiology.

[6]  C. R. Michael Color-sensitive complex cells in monkey striate cortex. , 1978, Journal of neurophysiology.

[7]  C. R. Michael,et al.  Columnar organization of color cells in monkey's striate cortex. , 1981, Journal of neurophysiology.

[8]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  Gershon Buchsbaum,et al.  A computational model of spatiochromatic image coding in early vision , 1991, J. Vis. Commun. Image Represent..

[14]  S. Zeki A vision of the brain , 1993 .

[15]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[16]  Leif H. Finkel,et al.  Network simulations of retinal and cortical contributions to color constancy , 1995, Vision Research.

[17]  Harry G. Barrow,et al.  A Self-Organizing Model of Color Blob Formation , 1996, Neural Computation.

[18]  S. Engel,et al.  Colour tuning in human visual cortex measured with functional magnetic resonance imaging , 1997, Nature.

[19]  D. Kiper,et al.  Chromatic properties of neurons in macaque area V2 , 1997, Visual Neuroscience.

[20]  H B Barlow,et al.  The knowledge used in vision and where it comes from. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[22]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[24]  T Troscianko,et al.  Color and luminance information in natural scenes. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  D. Ruderman,et al.  Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones. , 1998, Journal of The Optical Society of America A-optics Image Science and Vision.

[26]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[28]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.