Transcriptome-derived evidence supports recent polyploidization and a major phylogeographic division in Trithuria submersa (Hydatellaceae, Nymphaeales).

Relatively little is known about species-level genetic diversity in flowering plants outside the eudicots and monocots, and it is often unclear how to interpret genetic patterns in lineages with whole-genome duplications. We addressed these issues in a polyploid representative of Hydatellaceae, part of the water-lily order Nymphaeales. We examined a transcriptome of Trithuria submersa for evidence of recent whole-genome duplication, and applied transcriptome-derived microsatellite (expressed-sequence tag simple-sequence repeat (EST-SSR)) primers to survey genetic variation in populations across its range in mainland Australia. A transcriptome-based Ks plot revealed at least one recent polyploidization event, consistent with fixed heterozygous genotypes representing underlying sets of homeologous loci. A strong genetic division coincides with a trans-Nullarbor biogeographic boundary. Patterns of 'allelic' variation (no more than two variants per EST-SSR genotype) and recently published chromosomal evidence are consistent with the predicted polyploidization event and substantial homozygosity underlying fixed heterozygote SSR genotypes, which in turn reflect a selfing mating system. The Nullarbor Plain is a barrier to gene flow between two deep lineages of T. submersa that may represent cryptic species. The markers developed here should also be useful for further disentangling species relationships, and provide a first step towards future genomic studies in Trithuria.

[1]  Michael S. Barker,et al.  Methods for studying polyploid diversification and the dead end hypothesis: a reply to Soltis et al. (2014). , 2015, The New phytologist.

[2]  Rebecca A. Povilus,et al.  Floral biology and ovule and seed ontogeny of Nymphaea thermarum, a water lily at the brink of extinction with potential as a model system for basal angiosperms. , 2015, Annals of botany.

[3]  P. Rudall,et al.  Chromosome behavior at the base of the angiosperm radiation: karyology of Trithuria submersa (Hydatellaceae, Nymphaeales). , 2014, American journal of botany.

[4]  Matthew A. Gitzendanner,et al.  Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (). , 2014, The New phytologist.

[5]  D. Sokoloff,et al.  Reconstructing the age and historical biogeography of the ancient flowering-plant family Hydatellaceae (Nymphaeales) , 2014, BMC Evolutionary Biology.

[6]  Yanrong Wang,et al.  Exploiting Illumina Sequencing for the Development of 95 Novel Polymorphic EST-SSR Markers in Common Vetch (Vicia sativa subsp. sativa) , 2014, Molecules.

[7]  B. Mable,et al.  Recent progress and challenges in population genetics of polyploid organisms: an overview of current state‐of‐the‐art molecular and statistical tools , 2014, Molecular ecology.

[8]  T. Culley,et al.  An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR1 , 2013, Applications in plant sciences.

[9]  Chaozhu Yang,et al.  Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae) , 2013, BMC Genomics.

[10]  I. Leitch,et al.  Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). , 2013, Genome.

[11]  M. Byrne,et al.  Cryptic divergent lineages of Pultenaea pauciflora M.B. Scott (Fabaceae: Mirbelieae) exhibit different evolutionary history , 2013 .

[12]  M. Van Montagu,et al.  Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants , 2013, Proceedings of the National Academy of Sciences.

[13]  Katrina M. Dlugosch,et al.  Allele Identification for Transcriptome-Based Population Genomics in the Invasive Plant Centaurea solstitialis , 2013, G3: Genes | Genomes | Genetics.

[14]  B. vonHoldt,et al.  STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method , 2012, Conservation Genetics Resources.

[15]  V. Poncet,et al.  Microsatellite markers for Amborella (Amborellaceae), a monotypic genus endemic to New Caledonia. , 2012, American journal of botany.

[16]  D. Sokoloff,et al.  Molecular phylogenetics of Hydatellaceae (Nymphaeales): sexual-system homoplasy and a new sectional classification. , 2012, American journal of botany.

[17]  J. Williams,et al.  Pollen tube development in two species of Trithuria (Hydatellaceae) with contrasting breeding systems , 2012, Sexual Plant Reproduction.

[18]  Y. Isagi,et al.  Development of nuclear microsatellite markers for the critically endangered freshwater macrophyte, Nuphar submersa (Nymphaeaceae), and cross-species amplification in six additional Nuphar taxa , 2011, Conservation Genetics Resources.

[19]  Jan Sauer,et al.  Cryptic biodiversity loss linked to global climate change , 2011 .

[20]  Y. Isagi,et al.  Development of microsatellite markers for Euryale ferox (Nymphaeaceae), an endangered aquatic plant species in Japan. , 2011, American journal of botany.

[21]  L. Clark,et al.  polysat: an R package for polyploid microsatellite analysis , 2011, Molecular ecology resources.

[22]  O. Raspé,et al.  Two reproductively isolated cytotypes and a swarm of highly inbred, disconnected populations: a glimpse into Salicornia’s evolutionary history and challenging taxonomy , 2011, Journal of evolutionary biology.

[23]  J. Williams,et al.  Reproductive ecology of the basal angiosperm Trithuria submersa (Hydatellaceae). , 2010, Annals of botany.

[24]  Michael S. Barker,et al.  EvoPipes.net: Bioinformatic Tools for Ecological and Evolutionary Genomics , 2010, Evolutionary bioinformatics online.

[25]  D. Sokoloff,et al.  Seed fertilization, development, and germination in Hydatellaceae (Nymphaeales): Implications for endosperm evolution in early angiosperms. , 2009, American journal of botany.

[26]  T. Dickinson,et al.  Population genetic structure of diploid sexual and polyploid apomictic hawthorns (Crataegus; Rosaceae) in the Pacific Northwest , 2009, Molecular ecology.

[27]  T Jombart,et al.  Genetic markers in the playground of multivariate analysis , 2009, Heredity.

[28]  Z. Quan,et al.  Polymorphic microsatellite markers in Euryale ferox Salisb. (Nymphaeaceae) , 2009, Molecular ecology resources.

[29]  S. Castiglione,et al.  The origin of clonal diversity and structure of Populus alba in Sardinia: evidence from nuclear and plastid microsatellite markers. , 2008, Annals of botany.

[30]  Ryan A. Rapp,et al.  Evolutionary genetics of genome merger and doubling in plants. , 2008, Annual review of genetics.

[31]  J. Fitzsimons,et al.  Future landscapes in south-eastern Australia: the role of protected areas and biolinks in adaptation to climate change , 2008 .

[32]  W. Barthlott,et al.  Biogeography of Nymphaeales : extant patterns and historical events , 2008 .

[33]  Thomas L. Madden,et al.  Database indexing for production MegaBLAST searches , 2008, Bioinform..

[34]  D. Sokoloff,et al.  Comparative pollen morphology in the early‐divergent angiosperm family Hydatellaceae reveals variation at the infraspecific level , 2008 .

[35]  D. Sokoloff,et al.  Comparative ovule and megagametophyte development in Hydatellaceae and water lilies reveal a mosaic of features among the earliest angiosperms. , 2008, Annals of botany.

[36]  B. Faircloth,et al.  msatcommander: detection of microsatellite repeat arrays and automated, locus‐specific primer design , 2008, Molecular ecology resources.

[37]  M. Byrne,et al.  Granite outcrops as ancient islands in old landscapes: evidence from the phylogeography and population genetics of Eucalyptus caesia (Myrtaceae) in Western Australia , 2007 .

[38]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[39]  Noah A. Rosenberg,et al.  CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure , 2007, Bioinform..

[40]  M. Crisp,et al.  A congruent molecular signature of vicariance across multiple plant lineages. , 2007, Molecular phylogenetics and evolution.

[41]  A. Lowrie,et al.  The Biogeography of Drosera Stricticaulis (Droseraceae) in Australia: a Disjunct ‘Island’ Refugee? , 2007 .

[42]  Darren J Obbard,et al.  Simple allelic-phenotype diversity and differentiation statistics for allopolyploids , 2006, Heredity.

[43]  F. González-Candelas,et al.  A Bayesian Approach for Discriminating Among Alternative Inheritance Hypotheses in Plant Polyploids: The Allotetraploid Origin of Genus Borderea (Dioscoreaceae) , 2006, Genetics.

[44]  L. Fraser,et al.  Estimation of allele frequencies in polyploids under certain patterns of inheritance , 2005, Heredity.

[45]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[46]  B. Mable ‘why polyploidy is rarer in animals than in plants’: myths and mechanisms , 2004 .

[47]  D. Soltis,et al.  Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons , 2004 .

[48]  H. Schulenburg,et al.  A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level , 2004, Molecular ecology.

[49]  D. Soltis,et al.  Amborella not a "basal angiosperm"? Not so fast. , 2004, American journal of botany.

[50]  T. Wetter,et al.  Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. , 2004, Genome research.

[51]  J. A. Simo,et al.  The eustatic and tectonic origin of Neogene unconformities from the Great Australian Bight , 2004 .

[52]  R. Varshney,et al.  Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) , 2003, Theoretical and Applied Genetics.

[53]  D. Schemske,et al.  NEOPOLYPLOIDY IN FLOWERING PLANTS , 2002 .

[54]  T. Givnish,et al.  Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. , 2002, American journal of botany.

[55]  R. Anand,et al.  Regolith geology of the Yilgarn Craton, Western Australia: Implications for exploration , 2002 .

[56]  P. Unmack,et al.  Biogeography of Australian freshwater fishes , 2001 .

[57]  M. Beaumont,et al.  Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[58]  E. Roalson,et al.  Microsatellite analysis of a population crash and bottleneck in the Mauna Kea silversword, Argyroxiphium sandwicense ssp. sandwicense (Asteraceae), and its implications for reintroduction , 2000, Molecular ecology.

[59]  D. Coates Defining conservation units in a rich and fragmented flora: implications for the management of genetic resources and evolutionary processes in south-west Australian plants , 2000 .

[60]  Matthew Stephens,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[61]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[62]  D. Soltis,et al.  Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology , 1999, Nature.

[63]  M. Donoghue,et al.  The root of angiosperm phylogeny inferred from duplicate phytochrome genes. , 1999, Science.

[64]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[65]  D. Mount,et al.  Molecular Genetic Consequences of a Population Bottleneck Associated with Reintroduction of the Mauna Kea Silversword (Arg yroxiphium sandwicense ssp. sandwicense [Asteraceae]) , 1997 .

[66]  James Mallet,et al.  Genetic Analysis of Founder Bottlenecks in the Rare British Butterfly Plebejus argus , 1997 .

[67]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[68]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[69]  S. Hopper BIOGEOGRAPHICAL ASPECTS OF SPECIATION IN THE SOUTHWEST AUSTRALIAN FLORA , 1979 .

[70]  M. Nei,et al.  Estimation of average heterozygosity and genetic distance from a small number of individuals. , 1978, Genetics.

[71]  David H. Pledge Some observations on Hydatella inconspicua (Cheesem.) Cheesem. (Centrolepidaceae) , 1974 .

[72]  Masatoshi Nei,et al.  Genetic Distance between Populations , 1972, The American Naturalist.

[73]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[74]  Theunis Piersma,et al.  The interplay between habitat availability and population differentiation , 2012 .

[75]  L. Rieseberg,et al.  Preparation of normalized cDNA libraries for 454 Titanium transcriptome sequencing. , 2012, Methods in molecular biology.

[76]  C. Beaulieu,et al.  RESEARCH IN CONTEXT: PART OF A SPECIAL ISSUE ON SEXUAL PLANT REPRODUCTION Cabomba as a model for studies of early angiosperm evolution , 2011 .

[77]  S. Graham,et al.  Different gymnosperm outgroups have (mostly) congruent signal regarding the root of flowering plant phylogeny. , 2009, American journal of botany.

[78]  D. Sokoloff,et al.  Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower. , 2009, American journal of botany.

[79]  D. Sokoloff,et al.  Classification of the early-divergent angiosperm family Hydatellaceae : one genus instead of two, four new species and sexual dimorphism in dioecious taxa , 2008 .

[80]  B. G. Briggs,et al.  Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree , 2007, Nature.

[81]  David C. Tank,et al.  An update of the angiosperm phylogeny group classification for the orders and families of flowering plants : APGII , 2003 .