Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes.

We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.

[1]  Jitong Wang,et al.  Layered carbide-derived carbon with hierarchically porous structure for high rate lithium-sulfur batteries , 2016 .

[2]  Xun Wang,et al.  General synthesis of inorganic single-walled nanotubes , 2015, Nature Communications.

[3]  Jonathan N. Coleman,et al.  Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts , 2015 .

[4]  R. Frost,et al.  Intercalation of dodecylamine into kaolinite and its layering structure investigated by molecular dynamics simulation. , 2014, Journal of colloid and interface science.

[5]  Yang Ren,et al.  Gallium Sulfide–Single‐Walled Carbon Nanotube Composites: High‐Performance Anodes for Lithium‐Ion Batteries , 2014 .

[6]  P. Vaqueiro,et al.  Synthesis and characterization of inorganic-organic hybrid gallium selenides. , 2014, Inorganic chemistry.

[7]  Niall McEvoy,et al.  Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets , 2014, Nature Communications.

[8]  H. Dai,et al.  Dependence of the absorption and optical surface plasmon scattering of MoS₂ nanoparticles on aspect ratio, size, and media. , 2014, ACS nano.

[9]  A. Safari,et al.  From 1D chain to 3D network: a new family of inorganic-organic hybrid semiconductors MO3(L)(x) (M = Mo, W; L = organic linker) built on perovskite-like structure modules. , 2013, Journal of the American Chemical Society.

[10]  A. Mikos,et al.  Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. , 2013, Acta biomaterialia.

[11]  A. Powell,et al.  Solvothermal Synthesis of One‐dimensional Chalcogenides Containing Group 13 Elements , 2012 .

[12]  Xuefeng Guo,et al.  Inorganic nanotubes formation through the synergic evolution of dynamic templates and metallophosphates: from vesicles to nanotubes. , 2011, Chemical communications.

[13]  S. Gul,et al.  Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[14]  B. Richards,et al.  Arrays of chiral nanotubes and a layered coordination polymer containing gallium-sulfide supertetrahedral clusters. , 2010, Chemistry.

[15]  Wilfried Weigel,et al.  XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces , 2009 .

[16]  M. Montiel,et al.  First approximation to the analysis of Ru and Se in carbon nanoparticles as a new voltaic pile system by TXRF , 2009 .

[17]  P. Vaqueiro,et al.  Zero-dimensional units of ligand-bridged gallium-sulfide supertetrahedra. , 2009, Inorganic chemistry.

[18]  J. Dai,et al.  The first polymeric thiogallate with lanthanide-containing counter cation, [Dy2(en)6(μ2-OH)2]Ga4S8 , 2008 .

[19]  P. Vaqueiro,et al.  Gallium-sulfide supertetrahedral clusters as building blocks of covalent organic-inorganic networks. , 2008, Journal of the American Chemical Society.

[20]  J. Dai,et al.  Structural Study of Organic−Inorganic Hybrid Thiogallates and Selenidogallates in View of Effects of the Chelate Amines , 2008 .

[21]  P. Vaqueiro,et al.  Three-dimensional gallium sulphide open frameworks , 2007 .

[22]  P. Vaqueiro From one-dimensional chains to three-dimensional networks: solvothermal synthesis of thiogallates in ethylenediamine. , 2006, Inorganic chemistry.

[23]  Itaru Honma,et al.  Biosensing Properties of TitanateNanotube Films: Selective Detection of Dopamine in the Presence of Ascorbate and Uric Acid , 2006 .

[24]  S. Nair,et al.  Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions , 2005 .

[25]  M. Miyauchi,et al.  Electrochromism of titanate-based nanotubes. , 2005, Angewandte Chemie.

[26]  Deborah J. Jones,et al.  Birnessite-type manganese oxide–alkylamine mesophases obtained by intercalation and their thermal behaviour , 2004 .

[27]  P. Bruce,et al.  WO2Cl2 Nanotubes and Nanowires. , 2004, Angewandte Chemie.

[28]  Zhijun Zhang,et al.  Improved Optoelectronic Characteristics of Light-Emitting Diodes by Using a Dehydrated Nanotube Titanic Acid (DNTA)-Polymer Nanocomposite , 2004 .

[29]  B. Wang,et al.  Three-dimensional frameworks of gallium selenide supertetrahedral clusters. , 2004, Angewandte Chemie.

[30]  G. Park,et al.  Ruthenium Oxide Nanotube Arrays Fabricated by Atomic Layer Deposition Using a Carbon Nanotube Template , 2003 .

[31]  Y. Qian,et al.  Novel bismuth nanotube arrays synthesized by solvothermal method , 2003 .

[32]  Jing Li,et al.  From 1D chain to 3D network: tuning hybrid II-VI nanostructures and their optical properties. , 2003, Journal of the American Chemical Society.

[33]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[34]  Qing Peng,et al.  Synthesis and characterization of an open framework gallium selenide: Ga4Se7(en)2.(enH)2 , 2003 .

[35]  Xianhui Bu,et al.  Nonaqueous synthesis and selective crystallization of gallium sulfide clusters into three-dimensional photoluminescent superlattices. , 2003, Journal of the American Chemical Society.

[36]  Xianhui Bu,et al.  Microporous and Photoluminescent Chalcogenide Zeolite Analogs , 2002, Science.

[37]  Dongyuan Zhao,et al.  One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process , 2002 .

[38]  E. Samulski,et al.  Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3 , 2001 .

[39]  A. Zettl,et al.  Mass-production of boron nitride double-wall nanotubes and nanococoons , 2000 .

[40]  R. Nesper,et al.  Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes , 1999 .

[41]  R. Blachnik,et al.  [Ga(en)3][Ga3Se7(en)] · H2O: Ein Galliumchalkogenid mit Ketten aus [Ga3Se6Se2/2(en)]3–‐Bicyclen , 1999 .

[42]  R. Tenne,et al.  Cage structures and nanotubes of NiCl2 , 1998, Nature.

[43]  Shui-Tong Lee,et al.  Synthesis of Boron nitride nanotubes by means of excimer laser ablation at high temperature , 1998 .

[44]  R. Nesper,et al.  Redox-Active Nanotubes of Vanadium Oxide. , 1998, Angewandte Chemie.

[45]  K. Allakhverdiev,et al.  On a Possibility to Form Small Crystallites of Layered Gallium Selenide via Ultrasonic Treatment , 1997 .

[46]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[47]  Y. Matsui,et al.  Silica Gel Nanotubes Obtained by the Sol-Gel Method , 1995 .

[48]  R. Tenne,et al.  High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes , 1995, Science.

[49]  E. Lakomaa Atomic layer epitaxy (ALE) on porous substrates , 1994 .

[50]  R. Tenne,et al.  Polyhedral and cylindrical structures of tungsten disulphide , 1992, Nature.

[51]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[52]  F. Shepherd,et al.  Photoelectron studies of the densities of states in the gallium chalcogenides , 1975 .

[53]  M. Springford The Luminescence Characteristics of Some Group III-VI Compounds , 1963 .

[54]  P. Vaqueiro Solvothermal synthesis and characterisation of new one-dimensional indium and gallium sulphides: [C10N4H26]0.5[InS2] and [C10N4H26]0.5[GaS2] , 2006 .

[55]  H. A. Therese,et al.  Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route , 2005 .

[56]  T. Kijima,et al.  Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates. , 2004, Angewandte Chemie.

[57]  H. A. Therese,et al.  VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2. , 2004, Angewandte Chemie.

[58]  Robert A. Meyers,et al.  Encyclopedia of analytical chemistry : applications, theory and instrumentation , 2000 .

[59]  G. Tourillon,et al.  Electrochemically Synthesized Co and Fe Nanowires and Nanotubes , 1999 .

[60]  G. Ozin,et al.  Tin(IV) sulfide–alkylamine composite mesophase: a new class of thermotropic liquid crystals , 1997 .

[61]  C. Bianchi,et al.  XPS analysis of gallium oxides , 1994 .

[62]  E. Mooser,et al.  Indirect Energy Gap in GaSe and GaS , 1969 .