The simplest normal form of Hopf bifurcation
暂无分享,去创建一个
Pei Yu | A Y T Leung | P. Yu | A. Leung
[1] L. Chua,et al. Normal forms for nonlinear vector fields. I. Theory and algorithm , 1988 .
[2] Pei Yu,et al. COMPUTATION OF NORMAL FORMS VIA A PERTURBATION TECHNIQUE , 1998 .
[3] Andrew Y. T. Leung,et al. Bifurcation and Chaos in Engineering , 1998 .
[4] Y. P.. COMPUTATION OF NORMAL FORMS OF DIFFERENTIAL EQUATIONS ASSOCIATED WITH NON-SEMISIMPLE ZERO EIGENVALUES , 1999 .
[5] E. Freire,et al. Hypernormal Forms for Equilibria of Vector Fields. Codimension One Linear Degeneracies , 1999 .
[6] L. Chua,et al. Normal forms for nonlinear vector fields. II. Applications , 1989 .
[7] Yuan Yuan,et al. Computation of Simplest Normal Forms of differential equations associated with a Double-Zero Eigenvalue , 2001, Int. J. Bifurc. Chaos.
[8] Richard C. Churchill,et al. Unique normal forms for planar vector fields , 1988 .
[9] Floris Takens,et al. Normal forms for certain singularities of vectorfields , 1973 .
[10] Yuan Yuan,et al. An Efficient Method for Computing the Simplest Normal Forms of Vector Fields , 2003, Int. J. Bifurc. Chaos.
[11] Pei Yu,et al. SIMPLEST NORMAL FORMS OF HOPF AND GENERALIZED HOPF BIFURCATIONS , 1999 .
[12] H. Kokubu. Normal forms for parametrized vector fields and its application to bifurcations of some reaction diffusion equations , 1984 .
[13] Jing Li,et al. Unique Normal Form of Bogdanov–Takens Singularities , 2000 .
[14] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[15] Jan A. Sanders,et al. Further reduction of the Takens-Bogdanov normal form , 1992 .
[16] K. Huseyin,et al. Multiple Parameter Stability Theory and Its Applications: Bifurcations, Catastrophes, Instabilities , 1986 .
[17] Yuan Yuan,et al. A matching pursuit technique for computing the simplest normal forms of vector fields , 2003, J. Symb. Comput..
[18] Jan A. Sanders,et al. Normal form for the (2; n )-nilpotent vector field, using unvariant theory , 1988 .
[19] P. Coullet,et al. A simple global characterization for normal forms of singular vector fields , 1987 .
[20] P. Yu,et al. Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling , 2002 .
[21] H. Dulac. Solutions d'un système d'équations différentielles dans le voisinage de valeurs singulières , 1912 .
[22] Yue Liu,et al. Strong Instability of Solitary-Wave Solutions of a Generalized Boussinesq Equation , 2000 .
[23] A. Leung,et al. An Algorithm for Higher Order Hopf Normal Forms , 1995 .
[24] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[25] G. Belitskii. Invariant normal forms of formal series , 1979 .
[26] Andrew Y. T. Leung,et al. HIGHER ORDER NORMAL FORM AND PERIOD AVERAGING , 1998 .
[27] Hiroshi Kokubu,et al. Linear Grading Function and Further Reduction of Normal Forms , 1996 .
[28] Emilio Freire,et al. Hypernormal Form for the Hopf-Zero Bifurcation , 1998 .
[29] Chen Yushu,et al. Normal Form Analysis of Hopf Bifurcation Exemplified by Duffing's Equation , 1994 .
[30] M. Poincaré,et al. Sur les propriétés des fonctions définies par les équations aux différences partielles , 1879 .
[31] Shigehiro Ushiki,et al. Normal forms for singularities of vector fields , 1984 .
[32] Pei Yu,et al. A perturbation analysis of interactive static and dynamic bifurcations , 1988 .
[33] S. Chow,et al. Normal Forms and Bifurcation of Planar Vector Fields , 1994 .