The simplest normal form of Hopf bifurcation

Recently, further reduction on normal forms of differential equations leading to the simplest normal forms (SNFs) has received considerable attention. However, the computation of the SNF has been mainly restricted to systems which do not contain perturbation parameters (unfolding), since the computation of the SNF with unfolding is much more complicated than that of the SNF without unfolding. From the practical point of view, only the SNF with perturbation (bifurcation) parameters is useful in analysing physical or engineering problems. It is shown that the SNF with unfolding cannot be obtained using only near-identity transformation. Additional transformations such as time and parameter rescaling need to be introduced. An efficient computational method is presented for computing the algebraic equations that can be used to find the SNF. A physical example is given to show the applicability of the new method.

[1]  L. Chua,et al.  Normal forms for nonlinear vector fields. I. Theory and algorithm , 1988 .

[2]  Pei Yu,et al.  COMPUTATION OF NORMAL FORMS VIA A PERTURBATION TECHNIQUE , 1998 .

[3]  Andrew Y. T. Leung,et al.  Bifurcation and Chaos in Engineering , 1998 .

[4]  Y. P. COMPUTATION OF NORMAL FORMS OF DIFFERENTIAL EQUATIONS ASSOCIATED WITH NON-SEMISIMPLE ZERO EIGENVALUES , 1999 .

[5]  E. Freire,et al.  Hypernormal Forms for Equilibria of Vector Fields. Codimension One Linear Degeneracies , 1999 .

[6]  L. Chua,et al.  Normal forms for nonlinear vector fields. II. Applications , 1989 .

[7]  Yuan Yuan,et al.  Computation of Simplest Normal Forms of differential equations associated with a Double-Zero Eigenvalue , 2001, Int. J. Bifurc. Chaos.

[8]  Richard C. Churchill,et al.  Unique normal forms for planar vector fields , 1988 .

[9]  Floris Takens,et al.  Normal forms for certain singularities of vectorfields , 1973 .

[10]  Yuan Yuan,et al.  An Efficient Method for Computing the Simplest Normal Forms of Vector Fields , 2003, Int. J. Bifurc. Chaos.

[11]  Pei Yu,et al.  SIMPLEST NORMAL FORMS OF HOPF AND GENERALIZED HOPF BIFURCATIONS , 1999 .

[12]  H. Kokubu Normal forms for parametrized vector fields and its application to bifurcations of some reaction diffusion equations , 1984 .

[13]  Jing Li,et al.  Unique Normal Form of Bogdanov–Takens Singularities , 2000 .

[14]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[15]  Jan A. Sanders,et al.  Further reduction of the Takens-Bogdanov normal form , 1992 .

[16]  K. Huseyin,et al.  Multiple Parameter Stability Theory and Its Applications: Bifurcations, Catastrophes, Instabilities , 1986 .

[17]  Yuan Yuan,et al.  A matching pursuit technique for computing the simplest normal forms of vector fields , 2003, J. Symb. Comput..

[18]  Jan A. Sanders,et al.  Normal form for the (2; n )-nilpotent vector field, using unvariant theory , 1988 .

[19]  P. Coullet,et al.  A simple global characterization for normal forms of singular vector fields , 1987 .

[20]  P. Yu,et al.  Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling , 2002 .

[21]  H. Dulac Solutions d'un système d'équations différentielles dans le voisinage de valeurs singulières , 1912 .

[22]  Yue Liu,et al.  Strong Instability of Solitary-Wave Solutions of a Generalized Boussinesq Equation , 2000 .

[23]  A. Leung,et al.  An Algorithm for Higher Order Hopf Normal Forms , 1995 .

[24]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[25]  G. Belitskii Invariant normal forms of formal series , 1979 .

[26]  Andrew Y. T. Leung,et al.  HIGHER ORDER NORMAL FORM AND PERIOD AVERAGING , 1998 .

[27]  Hiroshi Kokubu,et al.  Linear Grading Function and Further Reduction of Normal Forms , 1996 .

[28]  Emilio Freire,et al.  Hypernormal Form for the Hopf-Zero Bifurcation , 1998 .

[29]  Chen Yushu,et al.  Normal Form Analysis of Hopf Bifurcation Exemplified by Duffing's Equation , 1994 .

[30]  M. Poincaré,et al.  Sur les propriétés des fonctions définies par les équations aux différences partielles , 1879 .

[31]  Shigehiro Ushiki,et al.  Normal forms for singularities of vector fields , 1984 .

[32]  Pei Yu,et al.  A perturbation analysis of interactive static and dynamic bifurcations , 1988 .

[33]  S. Chow,et al.  Normal Forms and Bifurcation of Planar Vector Fields , 1994 .