Peridynamic modeling of fuel pellet cracking

This study presents the peridynamic simulation of thermal cracking behaviour in uranium dioxide, UO2 fuel pellets that are used in light water reactors (LWR). The performance of the reactor is influenced by the thermo-mechanical behaviour of the pellets. During the fission process, the pellets are subjected to high temperature gradients, and the oxygen diffusion significantly affects the temperature distribution. Therefore, a coupled analysis of temperature and oxygen diffusions and deformation is unavoidable in order to predict accurate cracking behavior in a fuel pellet. The accuracy of the predictions is verified qualitatively by comparing with the previous studies.

[1]  M. Wenman,et al.  Modelling explicit fracture of nuclear fuel pellets using peridynamics , 2015 .

[2]  Robert Montgomery,et al.  Light water reactor fuel performance modeling and multi-dimensional simulation , 2011 .

[3]  J. Sercombe,et al.  3D fuel cracking modelling in pellet cladding mechanical interaction , 2008 .

[4]  Y. Iwano,et al.  FEMAXI-III, a computer code for fuel rod performance analysis , 1983 .

[5]  Glen Hansen,et al.  Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods , 2009 .

[6]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[7]  Juan C. Ramirez,et al.  Simulations of coupled heat transport, oxygen diffusion, and thermal expansion in UO2 nuclear fuel elements , 2009 .

[8]  Richard L. Williamson,et al.  Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior , 2011 .

[9]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[10]  R. Williamsona,et al.  Simulating Dynamic Fracture in Oxide Fuel Pellets Using Cohesive Zone Models , 2009 .

[11]  Selda Oterkus,et al.  Peridynamic thermal diffusion , 2014, J. Comput. Phys..

[12]  J. Janek,et al.  Thermal diffusion and Soret effect in (U,Me)O2+δ: the heat of transport of oxygen , 1998 .

[13]  Selda Oterkus,et al.  Peridynamics for antiplane shear and torsional deformations , 2015 .

[14]  K. Lassmann,et al.  TRANSURANUS: a fuel rod analysis code ready for use , 1992 .

[15]  H. Matzke,et al.  A Pragmatic Approach to Modelling Thermal Conductivity of Irradiated UO2 Fuel. Review and Recommendations , 1996 .

[16]  E. A. Aitken Thermal diffusion in closed oxide fuel systems , 1969 .

[17]  B. Kilic,et al.  Peridynamic Theory for Thermomechanical Analysis , 2010, IEEE Transactions on Advanced Packaging.

[18]  David Andrs,et al.  Multidimensional multiphysics simulation of nuclear fuel behavior , 2012 .

[19]  D. D. Lanning,et al.  FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup , 1997 .

[20]  Juan C. Ramirez,et al.  Simulations of heat and oxygen diffusion in UO2 nuclear fuel rods , 2006 .

[21]  S. Silling,et al.  Peridynamic modeling of plain and reinforced concrete structures. , 2005 .

[22]  Erdogan Madenci,et al.  An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory , 2010 .

[23]  L. V. Brutzel,et al.  Nuclear fuel deformation phenomena , 2016 .

[24]  Benjamin W. Spencer,et al.  Discrete element method for simulation of early-life thermal fracturing behavior in ceramic nuclear fuel pellets , 2014 .