Controlling the light propagation in one-dimensional photonic crystal via incoherent pump and interdot tunneling

Abstract. We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.

[1]  Garrison,et al.  Optical pulse propagation at negative group velocities due to a nearby gain line. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[2]  Yanfeng Bai,et al.  Subluminal and superluminal propagation of light in an N-type medium , 2005 .

[3]  Aephraim M. Steinberg,et al.  Dispersionless, highly superluminal propagation in a medium with a gain doublet. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[4]  W. Spitzer,et al.  Refractive index of ion-implanted GaAs , 1976 .

[5]  M. Maksimović,et al.  Emittance and absorptance tailoring by negative refractive index metamaterial-based Cantor multilayers , 2006 .

[6]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[7]  M. S. Zubairy,et al.  Quenching of spontaneous emission through interference of incoherent pump processes , 2003 .

[8]  R. Bose,et al.  Quantum information processing through quantum dots in slow-light photonic crystal waveguides , 2009 .

[9]  F. Kien,et al.  Manipulating the retrieval of stored light pulses , 2004 .

[10]  F. F. de Medeiros,et al.  Optical transmission spectra in quasiperiodic multilayered photonic structure , 2006 .

[11]  H. Sattari,et al.  Phase control of the group velocity in a quantum-dot molecule , 2014 .

[12]  A. V. Tsukanov,et al.  Electron transfer between semiconductor quantum dots via laser-induced resonance transitions , 2004 .

[13]  Andrew G. Glen,et al.  APPL , 2001 .

[14]  G. Qin,et al.  All-optical control of group velocity dispersion in tellurite photonic crystal fibers. , 2012, Optics letters.

[15]  Jibing Liu,et al.  Controllable gain, absorption and dispersion properties of an asymmetric double quantum dot nanostructure , 2008 .

[16]  G. S. Agarwal,et al.  Knob for changing light propagation from subluminal to superluminal , 2001 .

[17]  Thomas F. Krauss Slow light in photonic crystal waveguides , 2007 .

[18]  Nicholas Chako,et al.  Wave propagation and group velocity , 1960 .

[19]  V. Manga Rao,et al.  Atomic absorbers for controlling pulse propagation in resonators. , 2004, Optics letters.

[20]  Shun Lien Chuang,et al.  Variable optical buffer using slow light in semiconductor nanostructures , 2003, Proc. IEEE.

[21]  M. Mahmoudi,et al.  The effect of an incoherent pumping on the dispersive and absorptive properties of a four-level medium , 2009 .

[22]  G. Salamo,et al.  Optical detection of asymmetric quantum-dot molecules in double-layer InAs/GaAs structures , 2006 .

[23]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[24]  M. S. Zubairy,et al.  Tunable phase control for subluminal to superluminal light propagation , 2004 .

[25]  Xiao,et al.  Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms. , 1995, Physical review letters.

[26]  H. Sattari,et al.  Optically controllable switch for light propagation based on triple coupled quantum dots. , 2014, Applied optics.

[27]  E. L. Albuquerque,et al.  Optical localization in quasi-periodic multilayers , 1998 .

[28]  Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems , 2003 .

[29]  P. Hannaford,et al.  Light propagation in an atomic medium with steep and sign-reversible dispersion , 2003 .

[30]  C. Hu,et al.  Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity , 2017, Scientific Reports.

[31]  Zhiping Wang Control of the probe absorption via incoherent pumping fields in asymmetric semiconductor quantum wells , 2011 .

[32]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[33]  H. Tajalli,et al.  Switching from normal to anomalous dispersion via coherent field , 2005 .

[34]  S. D. Gupta,et al.  Reciprocity relations for reflected amplitudes. , 2002, Optics letters.

[35]  K. Zhu,et al.  A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity , 2011, Nanotechnology.

[36]  Robert W. Boyd,et al.  Superluminal and Slow Light Propagation in a Room-Temperature Solid , 2003, Science.

[37]  Harris,et al.  Dispersive properties of electromagnetically induced transparency. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[38]  H. Tajalli,et al.  Subluminal and superluminal light propagation via interference of incoherent pump fields , 2006 .

[39]  Hussein Taleb,et al.  Design of a low-power all-optical NOR gate using photonic crystal quantum-dot semiconductor optical amplifiers. , 2014, Optics letters.

[40]  Arthur C. Gossard,et al.  Quantum Interference in Semiconductor Quantum Wells , 1999 .

[41]  Yoshinori Watanabe,et al.  Advanced quantum dot and photonic crystal technologies for integrated nanophotonic circuits , 2009, Microelectron. J..

[42]  Peter Ingo Borel,et al.  Photonic crystal and quantum dot technologies for all-optical switch and logic device , 2006 .

[43]  G S Agarwal,et al.  Sub- and superluminal propagation of intense pulses in media with saturated and reverse absorption. , 2004, Physical review letters.

[44]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[45]  D. Novitsky,et al.  Logic gate based on a one-dimensional photonic crystal containing quantum dots , 2010 .

[46]  Sarah E. Harris,et al.  Nonlinear Optical Processes Using Electromagnetically Induced Transparency , 1990, Digest on Nonlinear Optics: Materials, Phenomena and Devices.

[47]  Edward S. Fry,et al.  ULTRASLOW GROUP VELOCITY AND ENHANCED NONLINEAR OPTICAL EFFECTS IN A COHERENTLY DRIVEN HOT ATOMIC GAS , 1999, quant-ph/9904031.

[48]  Dirk Englund,et al.  Integrated quantum optical networks based on quantum dots and photonic crystals , 2011 .

[49]  M. Mahmoudi,et al.  The effects of the incoherent pumping field on the phase control of group velocity , 2006 .

[50]  M. Mahmoudi,et al.  Absorption free superluminal light propagation in a three-level pump–probe system , 2007, 0711.3428.

[51]  Zhengyou Liu,et al.  Zero-n photonic band gap in a quasiperiodic stacking of positive and negative refractive index materials , 2004 .

[52]  Emmanuel Paspalakis,et al.  Optimal control of a symmetric double quantum-dot nanostructure : Analytical results , 2007 .

[53]  L. A. Openov Resonant electron transfer between quantum dots , 1999, cond-mat/9906390.