Design of an ultra-low mode volume piezo-optomechanical quantum transducer

Coherent transduction of quantum states from the microwave to the optical domain can play a key role in quantum networking and distributed quantum computing. We present the design of a piezo-optomechanical device formed in a hybrid lithium niobate on silicon platform, that is suitable for microwave-to-optical quantum transduction. Our design is based on acoustic hybridization of an ultra-low mode volume piezoacoustic cavity with an optomechanical crystal cavity. The strong piezoelectric nature of lithium niobate allows us to mediate transduction via an acoustic mode which only minimally interacts with the lithium niobate, and is predominantly silicon-like, with very low electrical and acoustic loss. We estimate that this transducer can realize an intrinsic conversion efficiency of up to 35% with<0.5 added noise quanta when resonantly coupled to a superconducting transmon qubit and operated in pulsed mode at 10 kHz repetition rate. The performance improvement gained in such hybrid lithium niobate-silicon transducers make them suitable for heralded entanglement of qubits between superconducting quantum processors connected by optical fiber links.

[1]  P. Rabl,et al.  Entangling microwaves with light , 2023, Science.

[2]  S. Girvin,et al.  Real-time quantum error correction beyond break-even , 2022, Nature.

[3]  Michael J. Hoffmann,et al.  Suppressing quantum errors by scaling a surface code logical qubit , 2022, Nature.

[4]  B. Hensen,et al.  An integrated microwave-to-optics interface for scalable quantum computing. , 2022, Nature nanotechnology.

[5]  Alkim B. Bozkurt,et al.  Electro-optic transduction in silicon via GHz-frequency nanomechanics , 2022, Optica.

[6]  T. McKenna,et al.  Optically heralded microwave photons , 2022, 2023 Conference on Lasers and Electro-Optics (CLEO).

[7]  S. Mittal,et al.  Superconducting-qubit readout via low-backaction electro-optic transduction , 2022, Nature.

[8]  J. Fink,et al.  Quantum-enabled operation of a microwave-optical interface , 2022, Nature Communications.

[9]  C. K. Andersen,et al.  Realizing repeated quantum error correction in a distance-three surface code , 2021, Nature.

[10]  H. Tang,et al.  Microwave-optical quantum frequency conversion , 2021, Optica.

[11]  Joonho Lee,et al.  Time-crystalline eigenstate order on a quantum processor , 2021, Nature.

[12]  Haibin Zhang,et al.  Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. , 2021, Physical review letters.

[13]  R. Ma,et al.  An Introduction to the Transmon Qubit for Electromagnetic Engineers , 2021, 2106.11352.

[14]  C. Murray Material matters in superconducting qubits , 2021, Materials Science and Engineering: R: Reports.

[15]  H. Tang,et al.  Cavity electro-optic circuit for microwave-to-optical conversion in the quantum ground state , 2021, Physical Review A.

[16]  Marco Lucamarini,et al.  600-km repeater-like quantum communications with dual-band stabilization , 2020, Nature Photonics.

[17]  A. Grassellino,et al.  Measurement of Low-temperature Loss Tangent of High-resistivity Silicon Wafers with High Q-factor Superconducting Resonators , 2021 .

[18]  S. Zihlmann,et al.  Magnetic field resilient high kinetic inductance superconducting niobium nitride coplanar waveguide resonators , 2020, Applied Physics Letters.

[19]  A. Cleland,et al.  Continuous and Time-Domain Coherent Signal Conversion between Optical and Microwave Frequencies , 2020 .

[20]  O. Painter,et al.  Superconducting qubit to optical photon transduction , 2020, Nature.

[21]  O. Painter,et al.  Nano-acoustic resonator with ultralong phonon lifetime , 2020, Science.

[22]  T. McKenna,et al.  Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature , 2020, Applied Physics Letters.

[23]  K. Berggren,et al.  Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction , 2020, Optica.

[24]  Jian-Wei Pan,et al.  Entanglement of two quantum memories via fibres over dozens of kilometres , 2020, Nature.

[25]  H. Tang,et al.  Cavity piezo-mechanics for superconducting-nanophotonic quantum interface , 2020, Nature Communications.

[26]  Jonathan M. Kindem,et al.  On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4 , 2019, Nature Communications.

[27]  M. Spiropulu,et al.  Perspectives on quantum transduction , 2019, Quantum Science and Technology.

[28]  O. Painter,et al.  Two-dimensional optomechanical crystal cavity with high quantum cooperativity , 2019, Nature Communications.

[29]  T. McKenna,et al.  Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency , 2019, Nature Communications.

[30]  K. Srinivasan,et al.  Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators. , 2019, Physical review applied.

[31]  A. Fiore,et al.  Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state , 2018, Nature physics.

[32]  Jacob M. Taylor,et al.  Figures of merit for quantum transducers , 2016, Quantum Science and Technology.

[33]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[34]  S. B. Pal,et al.  Efficient microwave-to-optical conversion using Rydberg atoms , 2018, Physical Review A.

[35]  Markus Aspelmeyer,et al.  Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator , 2017, Science.

[36]  O. Painter,et al.  Al transmon qubits on silicon-on-insulator for quantum device integration , 2017, 1703.10195.

[37]  Luigi Frunzio,et al.  Quantum acoustics with superconducting qubits , 2017, Science.

[38]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[39]  Yasunobu Nakamura,et al.  Bidirectional conversion between microwave and light via ferromagnetic magnons , 2016, 1601.03908.

[40]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[41]  Matthew D. Shaw,et al.  Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground-state of motion , 2015, 1503.05135.

[42]  Oskar Painter,et al.  Optimized optomechanical crystal cavity with acoustic radiation shield , 2012, 1206.2099.

[43]  P. Deotare,et al.  Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide , 2010, 1002.1319.

[44]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[45]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[46]  Min-Hang Weng,et al.  Characteristics of coplanar waveguide on lithium niobate crystals as a microwave substrate , 2007 .

[47]  J. Krupka,et al.  Measurements of Permittivity, Dielectric Loss Tangent, and Resistivity of Float-Zone Silicon at Microwave Frequencies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[48]  D. Reitze,et al.  Photoinduced time-resolved electrodynamics of superconducting metals and alloys , 2005, cond-mat/0501253.

[49]  Mark Lee,et al.  Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz , 2001 .

[50]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[51]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[52]  Cheng-Chung Chi,et al.  Quasiparticle and phonon lifetimes in superconductors , 1976 .