Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates

We discuss quantum optimal control of Bose-Einstein condensates trapped in magnetic microtraps. The objective is to transfer a condensate from the ground state to the first-excited state. This type of control problem is typically solved using derivative-based methods in a high-dimensional control space such as gradient-ascent pulse engineering (GRAPE) and Krotov's method or derivative-free methods in a reduced control space such as Nelder-Mead with a chopped random basis (CRAB). We discuss how these methods can be combined in gradient optimization using parametrization (GROUP) including the finite bandwidth of the control electronics. We compare these methods and find that GROUP converges much faster than Nelder-Mead with CRAB and achieves better results than GRAPE and Krotov's method on the control problem presented here.

[1]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[2]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[3]  S. Rice,et al.  Active control of the dynamics of atoms and molecules. , 1997, Annual review of physical chemistry.

[4]  Ulrich Hohenester,et al.  Twin-atom beams , 2010, 1012.2348.

[5]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.

[6]  Andreas Angerer,et al.  Smooth Optimal Quantum Control for Robust Solid-State Spin Magnetometry. , 2014, Physical review letters.

[7]  William D. Phillips,et al.  Controlled exchange interaction between pairs of neutral atoms in an optical lattice , 2007, Nature.

[8]  Mads Kock Pedersen,et al.  Exploring the quantum speed limit with computer games , 2015, Nature.

[9]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[10]  Quasi-1D Bose-Einstein condensates in the dimensional crossover regime , 2004, cond-mat/0401507.

[11]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[12]  I. Bloch,et al.  Optimal control of complex atomic quantum systems , 2015, Scientific Reports.

[13]  W. Ertmer,et al.  Twin Matter Waves for Interferometry Beyond the Classical Limit , 2011, Science.

[14]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[15]  J. Schmiedmayer,et al.  Vibrational state inversion of a Bose–Einstein condensate: optimal control and state tomography , 2012, 1212.4173.

[16]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[17]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[18]  Christiane P. Koch,et al.  Stabilization of ultracold molecules using optimal control theory (14 pages) , 2004 .

[19]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[20]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[21]  D. Matthes,et al.  Optimal control of Bose–Einstein condensates in three dimensions , 2015, 1507.07319.

[22]  U. Hohenester,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes , 2014, 1409.2976.

[23]  I. Lesanovsky,et al.  Adiabatic radio-frequency potentials for the coherent manipulation of matter waves , 2006 .

[24]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[25]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[26]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[27]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[28]  David J. Tannor,et al.  Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods , 2011 .

[29]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[30]  A. Borzì,et al.  Computational techniques for a quantum control problem with H1-cost , 2008 .

[31]  J. Werschnik,et al.  Quantum optimal control theory , 2007, 0707.1883.

[32]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[33]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[34]  Christiane P. Koch,et al.  Optimal control under spectral constraints: enforcing multi-photon absorption pathways , 2013 .

[35]  Andreas Kaiser,et al.  Optimal control theory for a target state distributed in time: optimizing the probe-pulse signal of a pump-probe-scheme. , 2004, The Journal of chemical physics.

[36]  J. M. Gambetta,et al.  Optimal control methods for rapidly time-varying Hamiltonians , 2011, 1102.0584.

[37]  Marin Bukov,et al.  Broken symmetry in a two-qubit quantum control landscape , 2017, 1711.09109.

[38]  Thomas E Skinner,et al.  Optimal control design of pulse shapes as analytic functions. , 2010, Journal of magnetic resonance.

[39]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[40]  P. Corkum,et al.  Journal of Physics B: atomic, molecular and optical physics , 2015 .

[41]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[42]  Ulrich Hohenester,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Consideration of filter effects , 2007, 1409.2976.

[43]  D. Tannor,et al.  Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. , 2018, Physical review letters.

[44]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[45]  D. Lucarelli Quantum optimal control via gradient ascent in function space and the time-bandwidth quantum speed limit , 2016, Physical Review A.

[46]  Sophie Shermer Training Schrödinger’s cat: quantum optimal control , 2015 .

[47]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[48]  W. Marsden I and J , 2012 .

[49]  R. Santra,et al.  Maximizing hole coherence in ultrafast photoionization of argon with an optimization by sequential parametrization update , 2016 .

[50]  Regina de Vivie-Riedle,et al.  Monotonic convergent optimal control theory with strict limitations on the spectrum of optimized laser fields. , 2008, Physical review letters.

[51]  Tommaso Calarco,et al.  Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape , 2015, 1506.04601.

[52]  A. Borzì,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps , 2007, quant-ph/0701094.

[53]  S Montangero,et al.  Information theoretical analysis of quantum optimal control. , 2014, Physical review letters.

[54]  R. S. Said,et al.  Quantum speed limit and optimal control of many-boson dynamics , 2014, 1412.6142.