Existence of an extremal ground state energy of a nanostructured quantum dot

Abstract This paper is concerned with two rearrangement optimization problems. These problems are motivated by two eigenvalue problems which depend nonlinearly on the eigenvalues. We consider a rational and a quadratic eigenvalue problem with Dirichlet’s boundary condition and investigate two related optimization problems where the goal function is the corresponding first eigenvalue. The first eigenvalue in the rational eigenvalue problem represents the ground state energy of a nanostructured quantum dot. In both the problems, the admissible set is a rearrangement class of a given function.

[1]  Marco Squassina,et al.  Deformation from symmetry for nonhomogeneous Schrodinger equations of higher order on unbounded domains , 2003 .

[2]  G. R. Burton,et al.  Variational problems on classes of rearrangements and multiple configurations for steady vortices , 1989 .

[3]  J.-L. Lions,et al.  Simplicit'e et isolation de la premi`ere valeur propre du p-Laplacien avec poids , 1987 .

[4]  An Lê,et al.  Eigenvalue problems for the p-Laplacian , 2006 .

[5]  G. R. Burton,et al.  Rearrangements of functions, maximization of convex functionals, and vortex rings , 1987 .

[6]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[7]  Fabrizio Cuccu,et al.  minimization of the first eigenvalue in problems involving the bi-laplacian , 2008 .

[8]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[9]  K. Hadeler,et al.  A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems , 1982 .

[10]  Weichung Wang,et al.  Numerical simulation of three dimensional pyramid quantum dot , 2004 .

[11]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[12]  H. Voss A Maxmin Principle for Nonlinear Eigenvalue Problems with Application to a Rational Spectral Problem in Fluid-Solid Vibration , 2003 .

[13]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[14]  Chien-Ping Lee,et al.  Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots , 2001 .

[15]  J. S. Przemieniecki Theory of matrix structural analysis , 1985 .