Existence of an extremal ground state energy of a nanostructured quantum dot
暂无分享,去创建一个
[1] Marco Squassina,et al. Deformation from symmetry for nonhomogeneous Schrodinger equations of higher order on unbounded domains , 2003 .
[2] G. R. Burton,et al. Variational problems on classes of rearrangements and multiple configurations for steady vortices , 1989 .
[3] J.-L. Lions,et al. Simplicit'e et isolation de la premi`ere valeur propre du p-Laplacien avec poids , 1987 .
[4] An Lê,et al. Eigenvalue problems for the p-Laplacian , 2006 .
[5] G. R. Burton,et al. Rearrangements of functions, maximization of convex functionals, and vortex rings , 1987 .
[6] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[7] Fabrizio Cuccu,et al. minimization of the first eigenvalue in problems involving the bi-laplacian , 2008 .
[8] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[9] K. Hadeler,et al. A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems , 1982 .
[10] Weichung Wang,et al. Numerical simulation of three dimensional pyramid quantum dot , 2004 .
[11] Peter Lancaster,et al. Lambda-matrices and vibrating systems , 2002 .
[12] H. Voss. A Maxmin Principle for Nonlinear Eigenvalue Problems with Application to a Rational Spectral Problem in Fluid-Solid Vibration , 2003 .
[13] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[14] Chien-Ping Lee,et al. Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots , 2001 .
[15] J. S. Przemieniecki. Theory of matrix structural analysis , 1985 .