Matrix differentiation for capacity region of Gaussian multiple access channels under weighted total power constraint

[1]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[2]  Jie Ding,et al.  Optimal control of complex networks based on matrix differentiation , 2016 .

[3]  Guoqi Li,et al.  Minimum-cost control of complex networks , 2015 .

[4]  Ming Chen,et al.  Matrix division multiple access for mini centralized network , 2014, 2014 IEEE International Conference on Communications (ICC).

[5]  Tianqi Wang,et al.  Optimal Rate Allocation for Distributed Source Coding over Gaussian Multiple Access Channels , 2013, IEEE Transactions on Wireless Communications.

[6]  Hongwen Yang,et al.  Optimal Power Control for Weighted Sum Rate of Multiple Access Channel , 2013 .

[7]  BrekelmansRuud,et al.  Safe Dike Heights at Minimal Costs , 2012 .

[8]  Haim H. Permuter,et al.  Capacity Region of Finite State Multiple-Access Channels With Delayed State Information at the Transmitters , 2011, IEEE Transactions on Information Theory.

[9]  H. Vincent Poor,et al.  On the Sum-Capacity of Degraded Gaussian Multiple-Access Relay Channels , 2008, IEEE Transactions on Information Theory.

[10]  H. Vincent Poor,et al.  Secrecy Capacity Region of a Multiple-Antenna Gaussian Broadcast Channel With Confidential Messages , 2007, IEEE Transactions on Information Theory.

[11]  Yiwei Thomas Hou,et al.  On the capacity of UWB-based wireless sensor networks , 2008, Comput. Networks.

[12]  B. Sundar Rajan,et al.  Finite signal-set capacity of two-user Gaussian Multiple Access Channel , 2008, 2008 IEEE International Symposium on Information Theory.

[13]  Matt Welsh,et al.  Deploying a wireless sensor network on an active volcano , 2006, IEEE Internet Computing.

[14]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[15]  Andrea J. Goldsmith,et al.  On the duality of Gaussian multiple-access and broadcast channels , 2002, IEEE Transactions on Information Theory.

[16]  Wei Yu,et al.  Iterative water-filling for Gaussian vector multiple-access channels , 2001, IEEE Transactions on Information Theory.

[17]  Sergio Verdú,et al.  Gaussian multiaccess channels with ISI: Capacity region and multiuser water-filling , 1993, IEEE Trans. Inf. Theory.

[18]  Sergio Verdú,et al.  The capacity region of the symbol-asynchronous Gaussian multiple-access channel , 1989, IEEE Trans. Inf. Theory.

[19]  Harald K. Wimmer,et al.  External problems for Ho¨lder norms of matrices and realizations of linear systems , 1988 .

[20]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[21]  Pierre A. Humblet,et al.  The capacity region of the totally asynchronous multiple-access channel , 1985, IEEE Trans. Inf. Theory.

[22]  Cyril Leung,et al.  An achievable rate region for the multiple-access channel with feedback , 1981, IEEE Trans. Inf. Theory.

[23]  R. Ahlswede The Capacity Region of a Channel with Two Senders and Two Receivers , 1974 .