Width and f-vectors of Cutsets in the Truncated Boolean Lattice

In this paper we will survey a collection of recent results about chains and cutsets in the Boolean lattice and some other posets. In particular, we consider the possibilities for the width (i.e., the size of the largest anti-chain) and the f-vectors (i.e., the number of subsets of various sizes) of cutsets. Given k chains in the Boolean lattice, we will also consider the possible number of pair-wise disjoint maximal chains that do not intersect the given k chains.

[1]  Shahriar Shahriari,et al.  Long Symmetric Chains in the Boolean Lattice , 1996, J. Comb. Theory, Ser. A.

[2]  Norihide Tokushige,et al.  Minimum Shadows in Uniform Hypergraphs and a Generalization of the Takagi Function , 1995, J. Comb. Theory, Ser. A.

[3]  Daniel J. Kleitman On a problem of Yuzvinsky on separating the n-cube , 1986, Discret. Math..

[4]  Charles J. Colbourn,et al.  The Combinatorics of Network Reliability , 1987 .

[5]  Shahriar Shahriari,et al.  On Uniform f-vectors of Cutsets in the Truncated Boolean Lattice , 2000, Comb..

[6]  Matthew Haines,et al.  On the f-vectors of Cutsets in the Boolean Lattice , 2001, J. Comb. Theory, Ser. A.

[7]  Daniel J. Kleitman,et al.  Minimum cutsets for an element of a boolean lattice , 1989 .

[8]  Zoltán Füredi,et al.  A minimal cutset of the boolean lattice with almost all members , 1989, Graphs Comb..

[9]  Ron Holzman,et al.  Packing lines in a hypercube , 1993, Discret. Math..

[10]  Jerry L. Trahan,et al.  Improved Lower Bounds on the Reliability of Hypercube Architectures , 1994, IEEE Trans. Parallel Distributed Syst..

[11]  Richard J. Nowakowski Cutsets of Boolean lattices , 1987, Discret. Math..

[12]  A. Hilton A THEOREM ON FINITE SETS , 1976 .

[13]  I. Anderson Combinatorics of Finite Sets , 1987 .

[14]  G. F. Clements Antichains in the set of subsets of a multiset , 1984, Discret. Math..

[15]  D. Kleitman,et al.  Proof techniques in the theory of finite sets , 1978 .

[16]  Peter Winkler,et al.  Maximal Chains and Antichains in Boolean Lattices , 1990, SIAM J. Discret. Math..

[17]  Feng Shi,et al.  The density of a maximum minimal cut in the subset lattice of a finite set is almost one , 1993, Discret. Math..

[18]  Shahriar Shahriari,et al.  Games of Chains and Cutsets in the Boolean Lattice II , 2001, Order.

[19]  Jerrold R. Griggs Matchings, cutsets, and chain partitions in graded posets , 1995, Discret. Math..