A mixed effects least squares support vector machine model for classification of longitudinal data
暂无分享,去创建一个
Sabine Van Huffel | Johan A. K. Suykens | Geert Molenberghs | Geert Verbeke | Jan Luts | J. Suykens | S. Huffel | G. Molenberghs | G. Verbeke | J. Luts
[1] Johan A. K. Suykens,et al. Fixed-size Least Squares Support Vector Machines: A Large Scale Application in Electrical Load Forecasting , 2006, Comput. Manag. Sci..
[2] Xihong Lin,et al. Semiparametric Regression of Multidimensional Genetic Pathway Data: Least‐Squares Kernel Machines and Linear Mixed Models , 2007, Biometrics.
[3] M. Kenward,et al. Bayesian discrimination with longitudinal data. , 2001, Biostatistics.
[4] Psychotropic drug classification based on sleep–wake behaviour of rats , 2007 .
[5] Gareth M. James,et al. Functional linear discriminant analysis for irregularly sampled curves , 2001 .
[6] H. Müller. Functional Modelling and Classification of Longitudinal Data * , 2005 .
[7] Johan A. K. Suykens,et al. Optimized fixed-size kernel models for large data sets , 2010, Comput. Stat. Data Anal..
[8] Johan A. K. Suykens,et al. Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.
[9] M. Wand,et al. Explicit connections between longitudinal data analysis and kernel machines , 2009 .
[10] J. Suykens,et al. A tutorial on support vector machine-based methods for classification problems in chemometrics. , 2010, Analytica chimica acta.
[11] Wenceslao González-Manteiga,et al. Statistics for Functional Data , 2007, Comput. Stat. Data Anal..
[12] A. Baron,et al. Linear discriminant models for unbalanced longitudinal data. , 2000, Statistics in medicine.
[13] James O. Ramsay,et al. Functional Data Analysis , 2005 .
[14] J. Suykens,et al. Primal and dual model representations in kernel-based learning , 2010 .
[15] Johan A. K. Suykens,et al. Least Squares Support Vector Machines , 2002 .
[16] Johan A. K. Suykens,et al. Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression , 2011, IEEE Transactions on Neural Networks.
[17] Geert Verbeke,et al. Predicting renal graft failure using multivariate longitudinal profiles. , 2008, Biostatistics.
[18] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[19] G. Verbeke,et al. A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .
[20] G. Robinson. That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .
[21] Peter Müller,et al. Semiparametric Bayesian classification with longitudinal markers , 2007, Journal of the Royal Statistical Society. Series C, Applied statistics.
[22] Alexander J. Smola,et al. Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.
[23] H. D. Patterson,et al. Recovery of inter-block information when block sizes are unequal , 1971 .
[24] Gareth M. James. Generalized linear models with functional predictors , 2002 .
[25] B. Narasimhan,et al. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. , 1999, The Journal of clinical endocrinology and metabolism.
[26] G. Molenberghs,et al. Linear Mixed Models for Longitudinal Data , 2001 .