A mixed effects least squares support vector machine model for classification of longitudinal data

A mixed effects least squares support vector machine (LS-SVM) classifier is introduced to extend the standard LS-SVM classifier for handling longitudinal data. The mixed effects LS-SVM model contains a random intercept and allows to classify highly unbalanced data, in the sense that there is an unequal number of observations for each case at non-fixed time points. The methodology consists of a regression modeling and a classification step based on the obtained regression estimates. Regression and classification of new cases are performed in a straightforward manner by solving a linear system. It is demonstrated that the methodology can be generalized to deal with multi-class problems and can be extended to incorporate multiple random effects. The technique is illustrated on simulated data sets and real-life problems concerning human growth.

[1]  Johan A. K. Suykens,et al.  Fixed-size Least Squares Support Vector Machines: A Large Scale Application in Electrical Load Forecasting , 2006, Comput. Manag. Sci..

[2]  Xihong Lin,et al.  Semiparametric Regression of Multidimensional Genetic Pathway Data: Least‐Squares Kernel Machines and Linear Mixed Models , 2007, Biometrics.

[3]  M. Kenward,et al.  Bayesian discrimination with longitudinal data. , 2001, Biostatistics.

[4]  Psychotropic drug classification based on sleep–wake behaviour of rats , 2007 .

[5]  Gareth M. James,et al.  Functional linear discriminant analysis for irregularly sampled curves , 2001 .

[6]  H. Müller Functional Modelling and Classification of Longitudinal Data * , 2005 .

[7]  Johan A. K. Suykens,et al.  Optimized fixed-size kernel models for large data sets , 2010, Comput. Stat. Data Anal..

[8]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[9]  M. Wand,et al.  Explicit connections between longitudinal data analysis and kernel machines , 2009 .

[10]  J. Suykens,et al.  A tutorial on support vector machine-based methods for classification problems in chemometrics. , 2010, Analytica chimica acta.

[11]  Wenceslao González-Manteiga,et al.  Statistics for Functional Data , 2007, Comput. Stat. Data Anal..

[12]  A. Baron,et al.  Linear discriminant models for unbalanced longitudinal data. , 2000, Statistics in medicine.

[13]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[14]  J. Suykens,et al.  Primal and dual model representations in kernel-based learning , 2010 .

[15]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[16]  Johan A. K. Suykens,et al.  Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression , 2011, IEEE Transactions on Neural Networks.

[17]  Geert Verbeke,et al.  Predicting renal graft failure using multivariate longitudinal profiles. , 2008, Biostatistics.

[18]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[19]  G. Verbeke,et al.  A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .

[20]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[21]  Peter Müller,et al.  Semiparametric Bayesian classification with longitudinal markers , 2007, Journal of the Royal Statistical Society. Series C, Applied statistics.

[22]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[23]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[24]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[25]  B. Narasimhan,et al.  Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. , 1999, The Journal of clinical endocrinology and metabolism.

[26]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .