Topological aspects of fermions on a honeycomb lattice

We formulate a model of relativistic fermions moving in two Euclidean dimensions based on a tight-binding model of graphene. The eigenvalue spectrum of the resulting Dirac operator is solved numerically in smooth U(1) gauge field backgrounds carrying an integer-valued topological charge Q, and it is demonstrated that the resulting number of zero-eigenvalue modes is in accord with the Atiyah-Singer index theorem applied to two continuum flavors. A bilinear but gauge non-invariant chirality operator appropriate for distinguishing the topological zero modes is identified. When this operator is used to calculate Q, it is found that the maximum topological charge capable of being measured in this fashion scales with the perimeter of the lattice. Some concluding remarks compare these results to what is known for staggered lattice fermions.

[1]  T. Kieu,et al.  On the flavour interpretations of staggered fermions , 1986 .

[2]  L. Karsten Lattice fermions in euclidean space-time , 1981 .

[3]  Jackiw Erratum: Fractional charge and zero modes for planar systems in a magnetic field , 1984, Physical review. D, Particles and fields.

[4]  Jeroen C. Vink,et al.  Remnants of the index theorem on the lattice , 1987 .

[5]  F. Wilczek,et al.  Lattice fermions. , 1987, Physical review letters.

[6]  An index theorem for graphene , 2006, cond-mat/0607394.

[7]  H. Aoki,et al.  Topological analysis of the quantum Hall effect in graphene: Dirac-Fermi transition across van Hove singularities and edge versus bulk quantum numbers , 2006, cond-mat/0607669.

[8]  K. Jansen,et al.  Twisted mass, overlap and Creutz fermions: Cut-off effects at tree-level of perturbation theory , 2008, 0802.3637.

[9]  J. Smit,et al.  Dynamical symmetry breaking in two flavor SU(N) and SO(N) lattice gauge theories , 1983 .

[10]  P. Bedaque,et al.  Broken symmetries from minimally doubled fermions , 2008, 0801.3361.

[11]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[12]  P. Bedaque,et al.  Search for fermion actions on hyperdiamond lattices , 2008, 0804.1145.

[13]  M. Creutz Local chiral fermions , 2008, 0808.0014.

[14]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[15]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[16]  M. Creutz Four-dimensional graphene and chiral fermions , 2007, 0712.1201.

[17]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[18]  R. Jackiw,et al.  Chiral gauge theory for graphene. , 2007, Physical review letters.

[19]  A. Boriçi Creutz fermions on an orthogonal lattice , 2007, 0712.4401.

[20]  R. Petronzio,et al.  Stability of lattice QCD simulations and the thermodynamic limit , 2005, hep-lat/0512021.

[21]  Andrew Vince,et al.  Computing the Discrete Fourier Transform on a Hexagonal Lattice , 2007, Journal of Mathematical Imaging and Vision.

[22]  O. Napoly,et al.  Flavours of lagrangian Susskind fermions , 1983 .

[23]  V P Gusynin,et al.  Unconventional integer quantum Hall effect in graphene. , 2005, Physical review letters.

[24]  G. Semenoff,et al.  Condensed-Matter Simulation of a Three-Dimensional Anomaly , 1984 .