Fire weather index data under historical and shared socioeconomic pathway projections in the 6th phase of the Coupled Model Intercomparison Project from 1850 to 2100

. Human-induced climate change is increasing the incidence of fire events and associated impacts on livelihood, biodiversity, and nature across the world. Understanding current and projected fire activity together with its impacts on ecosystems is crucial for evaluating future risks and taking actions to prevent such devastating events. Here we focus on fire weather as a key driver of fire activity. Fire weather products that have a global homogenous distribution in time and space provide many advantages to advance fire science and evaluate future risks. Therefore, in this study we calculate and provide for the first time the Canadian Fire Weather Index (FWI) with all available simulations of the 6th phase of the Coupled Model Intercomparison Project (CMIP6). Furthermore, we expand its regional applicability by combining improvements to the original algorithm for the FWI from several packages. A sensitivity analysis of the default version versus our improved version shows significant differences in the final FWI. With the improved version, we calculate the FWI using average relative humidity in one

[1]  M. Blackett,et al.  Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales , 2023, Geoscientific Model Development.

[2]  C. Azorín-Molina,et al.  Evaluation of global terrestrial near‐surface wind speed simulated by CMIP6 models and their future projections , 2022, Annals of the New York Academy of Sciences.

[3]  H. Douville,et al.  Global warming at near-constant tropospheric relative humidity is supported by observations , 2022, Communications Earth & Environment.

[4]  A. Russo,et al.  Drought–heatwave nexus in Brazil and related impacts on health and fires: A comprehensive review , 2022, Annals of the New York Academy of Sciences.

[5]  S. Seneviratne,et al.  A compound event-oriented framework to tropical fire risk assessment in a changing climate , 2022, Environmental Research Letters.

[6]  Matthew W. Jones,et al.  Global and Regional Trends and Drivers of Fire Under Climate Change , 2022, Reviews of Geophysics.

[7]  A. Voulgarakis,et al.  Climate drivers of global wildfire burned area , 2022, Environmental Research Letters.

[8]  Zong‐Liang Yang,et al.  Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100) , 2021, Scientific data.

[9]  Xiaoyang Zhang,et al.  Highly anomalous fire emissions from the 2019–2020 Australian bushfires , 2021, Environmental Research Communications.

[10]  S. Houweling,et al.  Vast CO2 release from Australian fires in 2019–2020 constrained by satellite , 2021, Nature.

[11]  A. Rocha,et al.  Future surface temperatures over Europe according to CMIP6 climate projections: an analysis with original and bias-corrected data , 2021, Climatic Change.

[12]  M. Barlow,et al.  How Well Do CMIP6 Historical Runs Match Observed Northeast U.S. Precipitation and Extreme Precipitation–Related Circulation? , 2020, Journal of Climate.

[13]  P. Jain,et al.  Downscaling fire weather extremes from historical and projected climate models , 2020, Climatic Change.

[14]  Botao Zhou,et al.  Evaluation of the Performance of CMIP6 HighResMIP on West African Precipitation , 2020 .

[15]  R. Moss,et al.  Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6 , 2020, Earth System Dynamics.

[16]  J. Rivera,et al.  Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014) , 2020 .

[17]  R. McKitrick,et al.  Pervasive Warming Bias in CMIP6 Tropospheric Layers , 2020, Earth and Space Science.

[18]  A. Arneth,et al.  Global ecosystems and fire: Multi‐model assessment of fire‐induced tree‐cover and carbon storage reduction , 2020, Global change biology.

[19]  R. Field Evaluation of Global Fire Weather Database reanalysis and short-term forecast products , 2020 .

[20]  anonymous,et al.  'A high-resolution reanalysis of global fire weather from 1979 to 2018 – Overwintering the Drought Code', , 2020 .

[21]  R. Vautard,et al.  Attribution of the Australian bushfire risk to anthropogenic climate change , 2020, Natural Hazards and Earth System Sciences.

[22]  Chenwei Shen,et al.  Global surface air temperatures in CMIP6: historical performance and future changes , 2020, Environmental Research Letters.

[23]  Alex J. Cannon,et al.  Multivariate bias corrections of climate simulations: which benefits for which losses? , 2020, Earth System Dynamics.

[24]  Chelene C. Hanes,et al.  A high-resolution reanalysis of global fire weather from 1979 to 2018 – overwintering the Drought Code , 2020, Earth System Science Data.

[25]  B. Sanderson,et al.  A fiery wake-up call for climate science , 2020, Nature Climate Change.

[26]  Fang Li Historical (1700-2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP) , 2019, Atmospheric Chemistry and Physics.

[27]  B. Krzeminski,et al.  A 1980–2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices , 2019, Scientific Data.

[28]  A. P. Williams,et al.  Global Emergence of Anthropogenic Climate Change in Fire Weather Indices , 2019, Geophysical Research Letters.

[29]  John E. Deeming,et al.  The National Fire-Danger Rating System , 2018 .

[30]  A. P. Williams,et al.  Global patterns of interannual climate–fire relationships , 2018, Global change biology.

[31]  J. Randerson,et al.  A human-driven decline in global burned area , 2017, Science.

[32]  E. Fischer,et al.  Understanding the regional pattern of projected future changes in extreme precipitation , 2017 .

[33]  A. Casanueva,et al.  Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe , 2017 .

[34]  J. Abatzoglou,et al.  Human exposure and sensitivity to globally extreme wildfire events , 2017, Nature Ecology &Evolution.

[35]  Brian C. O'Neill,et al.  The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 , 2016 .

[36]  J. Bedia,et al.  Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change , 2015 .

[37]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[38]  F. Pappenberger,et al.  Development of a Global Fire Weather Database , 2015 .

[39]  Grant J. Williamson,et al.  Climate-induced variations in global wildfire danger from 1979 to 2013 , 2015, Nature Communications.

[40]  Dhruva R. Chakrabarti,et al.  Atlas , 2014, OOPSLA.

[41]  W. Rossow,et al.  Tropical Precipitation Extremes , 2013 .

[42]  Carolyn Hull Sieg,et al.  Ten years after wildfires: How does varying tree mortality impact fire hazard and forest resiliency? , 2012 .

[43]  Graham Mills,et al.  Index sensitivity analysis applied to the Canadian Forest Fire Weather Index and the McArthur Forest Fire Danger Index , 2010 .

[44]  J. J. Sharples,et al.  A simple index for assessing fire danger rating , 2009, Environ. Model. Softw..

[45]  J. J. Sharples,et al.  A simple index for assessing fuel moisture content , 2009, Environ. Model. Softw..

[46]  A. Brunelle,et al.  Wildfire responses to abrupt climate change in North America , 2009, Proceedings of the National Academy of Sciences.

[47]  Orbita Roswintiarti,et al.  Development of the Indonesian and Malaysian Fire Danger Rating Systems , 2006 .

[48]  R. Field,et al.  Using Satellite Fire Detection to Calibrate Components of the Fire Weather Index System in Malaysia and Indonesia , 2005, Environmental management.

[49]  Philip W. Jones First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates , 1999 .

[50]  Mike D. Flannigan,et al.  Length of the fire season in a changing climate , 1993 .

[51]  S. Meikle,et al.  A Fire Danger Index System for the Transvaal Lowveld and Adjoining Escarpment Areas , 1987 .

[52]  John S. Frost,et al.  Fire-Danger Rating and Wildfire Occurrence in the Northeastern United States , 1983 .

[53]  T. T. Munger GRAPHIC METHOD OF REPRESENTING AND COMPARING DROUGHT INTENSITIES.1 , 1916 .

[54]  S. Seneviratne,et al.  Fire weather index data under historical and SSP projections in CMIP6 from 1850 to 2100 , 2022 .

[55]  A. Arneth,et al.  Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP) , 2020 .

[56]  C. Tebaldi Interactive comment on “Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6” , 2020 .

[57]  R. Field Evaluation of Global Fire Weather Database re-analysis and short-term forecast products , 2019 .

[58]  Kerry Anderson,et al.  Updated source code for calculating fire danger indices in the Canadian Forest Fire Weather Index System , 2015 .

[59]  Varela Fire Weather Index (FWI) classification for fire danger assessment applied in Greece , 2015 .

[60]  Ji-Zhong Jin,et al.  Wildfires and the Canadian Forest Fire Weather Index system for the Daxing'anling region of China , 2011 .

[61]  L. Donner,et al.  The Frequency of Extreme Rain Events in Satellite Rain-Rate Estimates and an Atmospheric General Circulation Model , 2007 .

[62]  A. Baumgartner Entwicklungslinien der forstlichen Meteorologie , 2005, Forstwissenschaftliches Centralblatt.

[63]  G. Meehl,et al.  OVERVIEW OF THE COUPLED MODEL INTERCOMPARISON PROJECT , 2005 .

[64]  David L. Martell,et al.  A Markov chain model of day to day changes in the Canadian forest fire weather index , 1999 .

[65]  P. Carrega,et al.  A Meteorological Index of Forest Fire Hazard in Mediterranean France , 1991 .

[66]  B. Sol,et al.  Estimation du risque météorologique d'incendies de forêts dans le Sud-Est de la France , 1990 .

[67]  C. E. Van Wagner,et al.  Development and structure of the Canadian Forest Fire Weather Index System , 1987 .

[68]  Jack D. Cohen,et al.  The 1978 National Fire-Danger Rating System: technical documentation , 1984 .

[69]  P. Cheney,et al.  Fire in forestry. Volume 1. Forest fire behavior and effects. Volume 2. Forest fire management and organization. , 1983 .

[70]  M. A. Fosberg Weather in wildland fire management: the Fire Weather Index , 1978 .

[71]  Adrien Orieux,et al.  Conditions météorologiques et incendies en région méditerranéenne , 1974 .

[72]  J. E. Deeming National Fire-Danger Rating System / , 1972 .

[73]  G. M. Byram,et al.  A Drought Index for Forest Fire Control , 1968 .