Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls.

Multiple sclerosis (MS) is an inflammatory CNS disease with a substantial genetic component, originally mapped to only the human leukocyte antigen (HLA) region. In the last 5 years, a total of seven genome-wide association studies and one meta-analysis successfully identified 57 non-HLA susceptibility loci. Here, we merged nominal statistical evidence of association and physical evidence of interaction to conduct a protein-interaction-network-based pathway analysis (PINBPA) on two large genetic MS studies comprising a total of 15,317 cases and 29,529 controls. The distribution of nominally significant loci at the gene level matched the patterns of extended linkage disequilibrium in regions of interest. We found that products of genome-wide significantly associated genes are more likely to interact physically and belong to the same or related pathways. We next searched for subnetworks (modules) of genes (and their encoded proteins) enriched with nominally associated loci within each study and identified those modules in common between the two studies. We demonstrate that these modules are more likely to contain genes with bona fide susceptibility variants and, in addition, identify several high-confidence candidates (including BCL10, CD48, REL, TRAF3, and TEC). PINBPA is a powerful approach to gaining further insights into the biology of associated genes and to prioritizing candidates for subsequent genetic studies of complex traits.

Sandra D'Alfonso | Hanne F. Harbo | Bernhard Hemmer | Filippo Martinelli-Boneschi | Margaret A. Pericak-Vance | Isabelle Cournu-Rebeix | Frauke Zipp | Stephen L. Hauser | Finn Sellebjerg | Jorge R. Oksenberg | Fabio Macciardi | Jan Hillert | Sergio E. Baranzini | Marco Salvetti | Bertrand Fontaine | Jonathan L. Haines | Andre Franke | Malin Larsson | Manuel Comabella | Per Hall | Bruce V. Taylor | Christina M. Lill | Janna Saarela | Pierre-Antoine Gourraud | Maria Ban | Alastair Compston | Hakon Hakonarson | Nadia Barizzone | Ingrid Kockum | Tomas Olsson | Stephen Sawcer | Nikolaos A. Patsopoulos | David R. Booth | Pouya Khankhanian | Per Soelberg Sørensen | Vittorio Martinelli | David A. Hafler | Roland Martin | Dorothea Buck | Giancarlo Comi | Anders Hamsten | Chris Cotsapas | Adrian J. Ivinson | Jim Stankovich | H. Hakonarson | J. Haines | M. Pericak-Vance | M. Ban | A. Goris | S. Sawcer | A. Compston | P. Hall | G. Stewart | D. Booth | M. Lathrop | C. Cotsapas | A. Hamsten | C. Graetz | D. Hafler | H. Harbo | E. Celius | V. Martinelli | G. Comi | P. Sørensen | A. Franke | F. Macciardi | F. Zipp | F. Guerini | C. Lill | T. Olsson | I. Kockum | Roland Martin | B. Hemmer | H. Søndergaard | A. Oturai | S. Baranzini | P. Khankhanian | S. Hauser | J. Oksenberg | J. Winkelmann | K. Koivisto | I. Elovaara | J. Stankovich | N. Patsopoulos | P. Gourraud | M. Salvetti | M. Comabella | F. Esposito | B. Taylor | F. Martinelli-Boneschi | P. Cavalla | J. McCauley | A. Kemppinen | P. Tienari | M. Reunanen | J. Saarela | K. Myhr | J. Hillert | B. Fontaine | S. D'alfonso | A. Spurkland | L. Bergamaschi | D. Buck | I. Cournu-Rebeix | B. Dubois | M. Larsson | M. Leone | P. Naldi | F. Sellebjerg | A. Ivinson | Safa Saker-Delye | N. Barizzone | V. Damotte | L. Guillot-Noel | Mark Lathrop | Juliane Winkelmann | Vincent Damotte | Anu Kemppinen | Kjell-Morten Myhr | Philip L. Dejager | Keijo Koivisto | Irina Elovaara | Mauri Reunanen | Jacob L. McCauley | Laura Bergamaschi | Franca R. Guerini | Paola Cavalla | Michael Li | Helle Bach Søndergaard | Elisabeth G. Celius | Lennox Din | Bénédicte Dubois | Federica Esposito | An Goris | Christiane Graetz | Lena Guillot-Noel | Maurizio Leone | Paola Naldi | Annette Bang Oturai | Franco Perla | Safa Saker-Delye | Anne Spurkland | Graeme J. Stewart | Pentti J. Tienari | Philip DeJager | F. Perla | Lennox Din | Michael Li | Pouya Khankhanian | P. Hall | P. Dejager

[1]  Ludwig Kappos,et al.  Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. , 2010, American journal of human genetics.

[2]  N. Schork,et al.  Pathway analysis of seven common diseases assessed by genome-wide association. , 2008, Genomics.

[3]  E. Marcotte,et al.  Prioritizing candidate disease genes by network-based boosting of genome-wide association data. , 2011, Genome research.

[4]  Kai Wang,et al.  Pathway-based approaches for analysis of genomewide association studies. , 2007, American journal of human genetics.

[5]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .

[6]  Margaret A. Pericak-Vance,et al.  A non-synonymous SNP within membrane metalloendopeptidase-like 1 (MMEL1) is associated with multiple sclerosis , 2010, Genes and Immunity.

[7]  P. Visscher,et al.  A versatile gene-based test for genome-wide association studies. , 2010, American journal of human genetics.

[9]  Pablo Moscato,et al.  Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20 , 2009, Nature Genetics.

[10]  Pierre J. Vinken,et al.  Multiple Sclerosis and Other Demyelinating Diseases , 1970 .

[11]  A. Verma,et al.  Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study , 2008 .

[12]  P. D. de Bakker,et al.  Genome‐wide meta‐analysis identifies novel multiple sclerosis susceptibility loci , 2011, Annals of neurology.

[13]  Michael R. Johnson,et al.  Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. , 2009, Human molecular genetics.

[14]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[15]  Pauline C Ng,et al.  Power to Detect Risk Alleles Using Genome-Wide Tag SNP Panels , 2007, PLoS genetics.

[16]  Eden Martin,et al.  Genomic convergence: identifying candidate genes for Parkinson's disease by combining serial analysis of gene expression and genetic linkage. , 2003, Human molecular genetics.

[17]  Simon C. Potter,et al.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.

[18]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[19]  Wei Zheng,et al.  dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks , 2011, Bioinform..

[20]  R. Myers,et al.  Candidate-gene approaches for studying complex genetic traits: practical considerations , 2002, Nature Reviews Genetics.

[21]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[22]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[23]  J. Rioux International Inflammatory Bowel Disease Genetics Consortium Identifies >50 Genetic Risk Factors for Ulcerative Colitis , 2010 .

[24]  M. Daly,et al.  Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology , 2011, PLoS genetics.

[25]  Manuel A. R. Ferreira,et al.  Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. , 2009, American journal of human genetics.

[26]  P. Matthews,et al.  Pathway and network-based analysis of genome-wide association studies in multiple sclerosis , 2009, Human molecular genetics.

[27]  Alastair Compston,et al.  McAlpine's Multiple Sclerosis , 2005 .

[28]  Lin S. Chen,et al.  Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. , 2010, American journal of human genetics.

[29]  Stephen Sawcer,et al.  The complex genetics of multiple sclerosis: pitfalls and prospects , 2008, Brain : a journal of neurology.

[30]  Joaquín Dopazo,et al.  Four new loci associations discovered by pathway-based and network analyses of the genome-wide variability profile of Hirschsprung’s disease , 2012, Orphanet Journal of Rare Diseases.

[31]  William S Bush,et al.  Evidence for polygenic susceptibility to multiple sclerosis--the shape of things to come. , 2010, American journal of human genetics.

[32]  F. Holsboer,et al.  Evidence for VAV2 and ZNF433 as susceptibility genes for multiple sclerosis , 2010, Journal of Neuroimmunology.

[33]  Gianmauro Cuccuru,et al.  Variants within the immunoregulatory CBLB gene are associated with multiple sclerosis , 2010, Nature Genetics.

[34]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[35]  B. Snel,et al.  Predicting disease genes using protein–protein interactions , 2006, Journal of Medical Genetics.

[36]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[37]  Peilin Jia,et al.  Gene set analysis of genome-wide association studies: methodological issues and perspectives. , 2011, Genomics.

[38]  D. Craig,et al.  Identification of a Novel Risk Locus for Multiple Sclerosis at 13q31.3 by a Pooled Genome-Wide Scan of 500,000 Single Nucleotide Polymorphisms , 2008, PloS one.

[39]  E. Rimm,et al.  1 Protein Interaction-Based Genome-Wide Analysis of Incident Coronary Heart Disease Running title : Jensen et al . ; Protein interaction-based GWAS of CHD , 2011 .

[40]  Zhongming Zhao,et al.  Searching joint association signals in CATIE schizophrenia genome-wide association studies through a refined integrative network approach , 2012, BMC Genomics.

[41]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[42]  W. Bodmer,et al.  Common and rare variants in multifactorial susceptibility to common diseases , 2008, Nature Genetics.

[43]  Ramnik J. Xavier,et al.  Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. , 2010, Blood.