Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium

[1]  J. Greer,et al.  Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation , 2017 .

[2]  Frank Feyerabend,et al.  The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells , 2016, PloS one.

[3]  T. Langdon,et al.  The influence of grain size and strain rate on the mechanical behavior of pure magnesium , 2016, Journal of Materials Science.

[4]  P. Kumta,et al.  Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium. , 2015, Materials science & engineering. C, Materials for biological applications.

[5]  H. Somekawa,et al.  Hall–Petch Breakdown in Fine-Grained Pure Magnesium at Low Strain Rates , 2015, Metallurgical and Materials Transactions A.

[6]  S. Bahl,et al.  The control of crystallographic texture in the use of magnesium as a resorbable biomaterial , 2014 .

[7]  A. Demir,et al.  The processing of ultrafine-grained Mg tubes for biodegradable stents. , 2013, Acta biomaterialia.

[8]  T. Langdon,et al.  A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques , 2013, Journal of Materials Science.

[9]  T. Baudin,et al.  Evolution of Strength and Homogeneity in a Magnesium AZ31 Alloy Processed by High‐Pressure Torsion at Different Temperatures , 2012 .

[10]  N. Kirkland,et al.  Magnesium biomaterials: Past, present and future , 2012 .

[11]  R. Mishra,et al.  Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium , 2012 .

[12]  B. Li,et al.  Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl , 2011 .

[13]  V. Lins,et al.  Corrosion Resistance of Steels Used in Alcohol and Sugar Industry , 2011 .

[14]  K. Xia,et al.  Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature , 2011 .

[15]  Yufeng Sun,et al.  Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid , 2011 .

[16]  N. Birbilis,et al.  Revealing the relationship between grain size and corrosion rate of metals , 2010 .

[17]  H. Fraser,et al.  Grain character influences on corrosion of ECAPed pure magnesium , 2010 .

[18]  T. Langdon,et al.  Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP , 2010 .

[19]  P. Uggowitzer,et al.  On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. , 2010, Acta biomaterialia.

[20]  D. Mantovani,et al.  Developments in metallic biodegradable stents. , 2010, Acta biomaterialia.

[21]  M. Escudero,et al.  Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. , 2010, Acta biomaterialia.

[22]  P. Lin,et al.  Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution , 2010 .

[23]  Andrej Atrens,et al.  Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation , 2010 .

[24]  P. Uggowitzer,et al.  MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. , 2009, Nature materials.

[25]  Xiaojun Wang,et al.  Microstructure and tensile property of the ECAPed pure magnesium , 2009 .

[26]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[27]  Terence G. Langdon,et al.  Using high-pressure torsion for metal processing: Fundamentals and applications , 2008 .

[28]  T. Langdon,et al.  Record Superplastic Ductility in a Magnesium Alloy Processed by Equal‐Channel Angular Pressing , 2008 .

[29]  G. Song,et al.  The Effect of Pre‐Processing and Grain Structure on the Bio‐Corrosion and Fatigue Resistance of Magnesium Alloy AZ31 , 2007 .

[30]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[31]  K. Xia,et al.  Equal channel angular pressing of magnesium alloy AZ31 , 2005 .

[32]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[33]  Donald W. Brown,et al.  Enhanced ductility in strongly textured magnesium produced by equal channel angular processing , 2004 .

[34]  Maria Dolors Baró,et al.  Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion , 2003 .

[35]  T. Langdon,et al.  Orientation imaging microscopy of ultrafine-grained nickel , 2002 .

[36]  D. StJohn,et al.  An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys , 2013 .

[37]  T. Mukai,et al.  Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure , 2001 .

[38]  T. Langdon,et al.  Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation , 2001 .

[39]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[40]  Terence G. Langdon,et al.  The shearing characteristics associated with equal-channel angular pressing , 1998 .

[41]  T. Langdon,et al.  Principle of equal-channel angular pressing for the processing of ultra-fine grained materials , 1996 .

[42]  M. Metikoš-huković,et al.  Impedance spectroscopic study of aluminium and Al-alloys in acid solution: inhibitory action of nitrogen containing compounds , 1994 .