Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches.

Supertree and supermatrix methods have great potential in the quest to build the tree of life and yet they remain controversial, with most workers opting for one approach or the other, but rarely both. Here, we employed both methods to construct phylogenetic trees of all genera of palms (Arecaceae/Palmae), an iconic angiosperm family of great economic importance. We assembled a supermatrix consisting of 16 partitions, comprising DNA sequence data, plastid restriction fragment length polymorphism data, and morphological data for all genera, from which a highly resolved and well-supported phylogenetic tree was built despite abundant missing data. To construct supertrees, we used variants of matrix representation with parsimony (MRP) analysis based on input trees generated directly from subsamples of the supermatrix. All supertrees were highly resolved. Standard MRP with bootstrap-weighted matrix elements performed most effectively in this case, generating trees with the greatest congruence with the supermatrix tree and fewest clades unsupported by any input tree. Nonindependence due to input trees based on combinations of data partitions was an acceptable trade-off for improvements in supertree performance. Irreversible MRP and the use of strictly independent input trees only provided no obvious benefits. Contrary to previous claims, we found that unsupported clades are not infrequent under some MRP implementations, with up to 13% of clades lacking support from any input tree in some irreversible MRP supertrees. To build a formal synthesis, we assessed the cross-corroboration between supermatrix trees and the variant supertrees using semistrict consensus, enumerating shared clades and compatible clades. The semistrict consensus of the supermatrix tree and the most congruent supertree contained 160 clades (of a maximum of 204), 137 of which were present in both trees. The relationships recovered by these trees strongly support the current phylogenetic classification of palms. We evaluate 2 composite supertree support measures (rQS and V) and conclude that it is more informative to report numbers of input trees that support or conflict with a given supertree clade. This study demonstrates that supertree and supermatrix methods can provide effective, explicit, and complimentary mechanisms for synthesizing disjointed phylogenetic evidence while emphasizing the need for further refinement of supertree methods.

[1]  F. Feltus,et al.  Novel nuclear intron‐spanning primers for Arecaceae evolutionary biology , 2008, Molecular ecology resources.

[2]  François-Joseph Lapointe,et al.  Properties of supertree methods in the consensus setting. , 2007, Systematic biology.

[3]  J. Parnell,et al.  Reconstructing the Tree of Life Taxonomy and Systematics of Species Rich Taxa , 2006 .

[4]  Mark Wilkinson,et al.  Supertree Methods for Building the Tree of Life: Divide-and-Conquer Approaches to Large Phylogenetic Problems , 2006 .

[5]  Andy Purvis,et al.  A higher-level MRP supertree of placental mammals , 2006, BMC Evolutionary Biology.

[6]  T. Fulton,et al.  Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. , 2006, Molecular phylogenetics and evolution.

[7]  M. Donoghue,et al.  Increasing data transparency and estimating phylogenetic uncertainty in supertrees: Approaches using nonparametric bootstrapping. , 2006, Systematic biology.

[8]  M. Chase,et al.  Homoplasious character combinations and generic delimitation: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). , 2006, American journal of botany.

[9]  J. G. Burleigh,et al.  Supertree bootstrapping methods for assessing phylogenetic variation among genes in genome-scale data sets. , 2006, Systematic biology.

[10]  M. Chase,et al.  Low-copy nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). , 2006, Molecular phylogenetics and evolution.

[11]  Nicolas Salamin,et al.  Sympatric speciation in palms on an oceanic island , 2006, Nature.

[12]  M. Harley A summary of fossil records for Arecaceae , 2006 .

[13]  J. Dransfield,et al.  A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny , 2006 .

[14]  John J. Wiens,et al.  Missing data and the design of phylogenetic analyses , 2006, J. Biomed. Informatics.

[15]  R. Bateman,et al.  Molecular phylogeny of the palm genus Chamaedorea, based on the low-copy nuclear genes PRK and RPB2. , 2006, Molecular phylogenetics and evolution.

[16]  Alfried P Vogler,et al.  Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). , 2006, Molecular biology and evolution.

[17]  Mark Wilkinson,et al.  Measuring support and finding unsupported relationships in supertrees. , 2005, Systematic biology.

[18]  J. L. Gittleman,et al.  A complete phylogeny of the whales, dolphins and even‐toed hoofed mammals (Cetartiodactyla) , 2005, Biological reviews of the Cambridge Philosophical Society.

[19]  Oliver Eulenstein,et al.  The shape of supertrees to come: tree shape related properties of fourteen supertree methods. , 2005, Systematic biology.

[20]  C. Lewis,et al.  Molecular Phylogenetics of Tribe Geonomeae (Arecaceae) Using Nuclear DNA Sequences of Phosphoribulokinase and RNA Polymerase II , 2005 .

[21]  R. Govaerts,et al.  World Checklist of Palms , 2005 .

[22]  Simon A. A. Travers,et al.  Does a tree–like phylogeny only exist at the tips in the prokaryotes? , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[24]  O. Bininda-Emonds Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life , 2004 .

[25]  J. Terborgh,et al.  Falling palm fronds structure Amazonian rainforest sapling communities , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  B. Bremer,et al.  Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. , 2004, Systematic biology.

[27]  O. Bininda-Emonds,et al.  The evolution of supertrees. , 2004, Trends in ecology & evolution.

[28]  John Gatesy,et al.  Inconsistencies in arguments for the supertree approach: supermatrices versus supertrees of Crocodylia. , 2004, Systematic biology.

[29]  O. Bininda-Emonds,et al.  Trees versus characters and the supertree/supermatrix "paradox". , 2004, Systematic biology.

[30]  Pamela S Soltis,et al.  Darwin's abominable mystery: Insights from a supertree of the angiosperms , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  O. Bininda-Emonds,et al.  Novel versus unsupported clades: assessing the qualitative support for clades in MRP supertrees. , 2003, Systematic biology.

[32]  J. Wiens,et al.  Missing data, incomplete taxa, and phylogenetic accuracy. , 2003, Systematic biology.

[33]  Nicolas Salamin,et al.  Assessing internal support with large phylogenetic DNA matrices. , 2003, Molecular phylogenetics and evolution.

[34]  J. Doyle,et al.  A phylogenetic analysis of tribe Areceae (Arecaceae) using two low-copy nuclear genes , 2002, Plant Systematics and Evolution.

[35]  J. L. Gittleman,et al.  The (Super)Tree of Life: Procedures, Problems, and Prospects , 2002 .

[36]  Rob DeSalle,et al.  Resolution of a supertree/supermatrix paradox. , 2002, Systematic biology.

[37]  W. Hahn A phylogenetic analysis of the Arecoid Line of palms based on plastid DNA sequence data. , 2002, Molecular phylogenetics and evolution.

[38]  F. Lapointe,et al.  War and peace in phylogenetics: a rejoinder on total evidence and consensus. , 2001, Systematic biology.

[39]  M J Sanderson,et al.  Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. , 2001, Systematic biology.

[40]  M. Chase,et al.  Coding and noncoding plastid DNA in palm systematics. , 2001, American journal of botany.

[41]  J. Doyle,et al.  Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). , 2001, Molecular phylogenetics and evolution.

[42]  D. Morrison,et al.  Monocots: Systematics and Evolution , 2000 .

[43]  K. Bremer Early Cretaceous lineages of monocot flowering plants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  T. Hedderson,et al.  Phylogeny, Character Evolution, and a New Classification of the Calamoid Palms , 2000 .

[45]  T. Hedderson,et al.  Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. , 2000, Molecular phylogenetics and evolution.

[46]  K. Nixon The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis , 1999 .

[47]  T. Hedderson,et al.  A phylogenetic study of the palm family (Palmae) based on chloroplast DNA sequences from thetrnL —trnF region , 1999, Plant Systematics and Evolution.

[48]  J. Wiens Does adding characters with missing data increase or decrease phylogenetic accuracy? , 1998, Systematic biology.

[49]  O. Bininda-Emonds,et al.  Properties of matrix representation with parsimony analyses. , 1998, Systematic biology.

[50]  Andy Purvis,et al.  Phylogenetic supertrees: Assembling the trees of life. , 1998, Trends in ecology & evolution.

[51]  A. Henderson Monocotyledons: Systematics and evolution. 2 vols. Edited by Paula Rudall, Phillip Cribb, David Cutler & Christopher Humphries. , 1996, Brittonia.

[52]  F. Ronquist Matrix representation of trees, redundancy, and weighting , 1996 .

[53]  Andy Purvis,et al.  A Modification to Baum and Ragan's Method for Combining Phylogenetic Trees , 1995 .

[54]  Allen G. Rodrigo,et al.  A comment on Baum's method for combining phylogenetic trees , 1993 .

[55]  M. Ragan,et al.  Reply to A. G. Rodrigo's "A Comment on Baum's Method for Combining Phylogenetic Trees" , 1993 .

[56]  M. Ragan Phylogenetic inference based on matrix representation of trees. , 1992, Molecular phylogenetics and evolution.

[57]  B. Baum Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees , 1992 .

[58]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[59]  J. Fisher,et al.  A new Coryphoid palm genus from Madagascar , 2008 .

[60]  S. Zona,et al.  Leucothrinax morrisii, a new namefor a familiar Carribean palm. , 2008 .

[61]  J. Gatesy,et al.  The supermatrix approach to systematics. , 2007, Trends in ecology & evolution.

[62]  Jerrold I. Davis,et al.  MULTIGENE ANALYSES OF MONOCOT RELATIONSHIPS : A SUMMARY , 2006 .

[63]  Fay,et al.  Multigene Analyses of Monocot Relationships , 2006 .

[64]  C. Lewis,et al.  Dransfieldia (Arecaceae)—A New Palm Genus from Western New Guinea , 2006 .

[65]  Yuguo Wang,et al.  Phylogeny of Symplocos Based on DNA Sequences of the Chloroplast trnC–trnD Intergenic Region , 2006 .

[66]  J. Dransfield,et al.  A new phylogenetic classification of the palm family , 2005 .

[67]  Harold N. Bryant,et al.  The Cladistics of Matrix Representation with Parsimony Analysis , 2004 .

[68]  M. Springer,et al.  A Critique of Matrix Representation with Parsimony Supertrees , 2004 .

[69]  Kate E. Jones,et al.  Chapter 12 GARBAGE IN , GARBAGE OUT Data issues in supertree construction , 2004 .

[70]  Olaf R. P. Bininda-Emonds,et al.  Garbage in, Garbage out , 2004 .

[71]  Bee F. Gunn The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera , 2004 .

[72]  James O. McInerney,et al.  Some Desiderata for Liberal Supertrees , 2004 .

[73]  Mark A. Ragan,et al.  The MRP Method , 2004 .

[74]  Mark Wilkinson,et al.  Matrix representation with parsimony, taxonomic congruence, and total evidence. , 2002, Systematic biology.

[75]  W. Hahn,et al.  A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences. , 2002, Systematic biology.

[76]  onrad,et al.  Resolution of a Supertree / Supermatrix Paradox , 2002 .

[77]  Nicolas Salamin,et al.  Building supertrees: an empirical assessment using the grass family (Poaceae). , 2002, Systematic biology.

[78]  M. Kennedy,et al.  SEABIRD SUPERTREES: COMBINING PARTIAL ESTIMATES OF PROCELLARIIFORM PHYLOGENY , 2002 .

[79]  ICHAEL,et al.  Assessment of the Accuracy of Matrix Representation with Parsimony Analysis Supertree Construction , 2001 .

[80]  François-Joseph Lapointe,et al.  Increasing phylogenetic accuracy with global congruence , 2001, Bioconsensus.

[81]  K. Nixon,et al.  The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis , 1999, Cladistics : the international journal of the Willi Hennig Society.

[82]  M. Ragan,et al.  Matrix representation in reconstructing phylogenetic relationships among the eukaryotes. , 1992, Bio Systems.