Beyond ωBS-regular Languages: ωT-regular Expressions and Counter-Check Automata
暂无分享,去创建一个
[1] Thomas Colcombet,et al. Bounds in ω-regularity , .
[2] Mikolaj Bojanczyk,et al. Weak MSO with the Unbounding Quantifier , 2009, Theory of Computing Systems.
[3] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic , 1990 .
[4] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[5] Angelo Montanari,et al. Interval Logics and ωB-Regular Languages , 2013, LATA.
[6] Calvin C. Elgot,et al. Decidability and Undecidability of Extensions of Second (First) Order Theory of (Generalized) Successor , 1966, J. Symb. Log..
[7] Szczepan Hummel,et al. The Topological Complexity of MSO+U and Related Automata Models , 2012, Fundam. Informaticae.
[8] Thomas A. Henzinger,et al. Finitary fairness , 1998, TOPL.
[9] Szymon Torunczyk,et al. The MSO+U theory of (N, <) is undecidable , 2016, STACS.
[10] Robert McNaughton,et al. Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..
[11] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[12] Angelo Montanari,et al. Adding an Equivalence Relation to the Interval Logic ABB: Complexity and Expressiveness , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
[13] Dario Della Monica,et al. Prompt Interval Temporal Logic , 2016, JELIA.
[14] Orna Kupferman,et al. From liveness to promptness , 2009, Formal Methods Syst. Des..
[15] Mikolaj Bojanczyk. A Bounding Quantifier , 2004, CSL.
[16] MICHA L SKRZYPCZAK,et al. SEPARATION PROPERTY FOR ωB- AND ωS-REGULAR LANGUAGES , 2014 .
[17] Thomas Colcombet,et al. Bounds in w-Regularity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[18] Michal Skrzypczak. Separation Property for wB- and wS-regular Languages , 2014, Log. Methods Comput. Sci..