OLA1 regulates protein synthesis and integrated stress response by inhibiting eIF2 ternary complex formation

[1]  Zhiping Weng,et al.  ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers , 2014, Bioinform..

[2]  S. Sanyal,et al.  Structural and Functional Insights into the Mode of Action of a Universally Conserved Obg GTPase , 2014, PLoS biology.

[3]  Daniel J. Burnside,et al.  A global investigation of gene deletion strains that affect premature stop codon bypass in yeast, Saccharomyces cerevisiae. , 2014, Molecular bioSystems.

[4]  A. Yasui,et al.  The BRCA1/BARD1-interacting protein OLA1 functions in centrosome regulation. , 2014, Molecular cell.

[5]  D. Laukens,et al.  The paradox of the unfolded protein response in cancer. , 2013, Anticancer research.

[6]  S. Singer,et al.  Small-molecule targeting of translation initiation for cancer therapy , 2013, Oncotarget.

[7]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[8]  S. Snyder,et al.  Inositol Polyphosphate Multikinase Is a Coactivator of p53-Mediated Transcription and Cell Death , 2013, Science Signaling.

[9]  V. Rubio,et al.  OLA1 protects cells in heat shock by stabilizing HSP70 , 2013, Cell Death and Disease.

[10]  N. Sonenberg,et al.  Principles of translational control: an overview. , 2012, Cold Spring Harbor perspectives in biology.

[11]  H. Wieden,et al.  The 70S ribosome modulates the ATPase activity of Escherichia coli YchF , 2012, RNA biology.

[12]  G. Wagner,et al.  Tumor suppression by small molecule inhibitors of translation initiation , 2012, Oncotarget.

[13]  Paul Lasko,et al.  Translational control in cellular and developmental processes , 2012, Nature Reviews Genetics.

[14]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[15]  Robert A. Weinberg,et al.  Tumor Metastasis: Molecular Insights and Evolving Paradigms , 2011, Cell.

[16]  N. Verstraeten,et al.  The Universally Conserved Prokaryotic GTPases , 2011, Microbiology and Molecular Reviews.

[17]  J. Supko,et al.  Chemical Genetics Identify eIF2α Kinase Heme Regulated Inhibitor as Anti-Cancer Target , 2011, Nature chemical biology.

[18]  A. Zmijewska,et al.  Glycogen synthase kinase-3 regulates endoplasmic reticulum (ER) stress-induced CHOP expression in neuronal cells. , 2011, Experimental cell research.

[19]  B. Prakash,et al.  Deciphering the catalytic machinery in a universally conserved ribosome binding ATPase YchF. , 2011, Biochemical and biophysical research communications.

[20]  Jiangbin Ye,et al.  The GCN2‐ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation , 2010, The EMBO journal.

[21]  M. Lieberman,et al.  OLA1, an Obg-like ATPase, suppresses antioxidant response via nontranscriptional mechanisms , 2009, Proceedings of the National Academy of Sciences.

[22]  J. Diehl,et al.  Hypoxic Reactive Oxygen Species Regulate the Integrated Stress Response and Cell Survival , 2008, Journal of Biological Chemistry.

[23]  D. Ron,et al.  Enhanced integrated stress response promotes myelinating oligodendrocyte survival in response to interferon-gamma. , 2008, The American journal of pathology.

[24]  Roman Fedorov,et al.  Crystal structure of the intact archaeal translation initiation factor 2 demonstrates very high conformational flexibility in the alpha- and beta-subunits. , 2008, Journal of molecular biology.

[25]  D. Andreev,et al.  Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2 , 2008, Nature Structural &Molecular Biology.

[26]  J. Aguirre-Ghiso,et al.  Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. , 2008, Cancer research.

[27]  A. Ryazanov,et al.  A pharmacoproteomic approach implicates eukaryotic elongation factor 2 kinase in ER stress-induced cell death , 2008, Cell Death and Differentiation.

[28]  Alfred Wittinghofer,et al.  Human OLA1 Defines an ATPase Subfamily in the Obg Family of GTP-binding Proteins* , 2007, Journal of Biological Chemistry.

[29]  P. Sarnow,et al.  Initiation factor-independent translation mediated by the hepatitis C virus internal ribosome entry site. , 2006, RNA.

[30]  D. Scheuner,et al.  ER stress‐regulated translation increases tolerance to extreme hypoxia and promotes tumor growth , 2005, The EMBO journal.

[31]  Qi Dong,et al.  Application of new tissue microarrayer-ZM-1 without recipient paraffin block. , 2005, Journal of Zhejiang University. Science. B.

[32]  D. Jenkins,et al.  Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice , 2005, Breast Cancer Research.

[33]  N. Sonenberg,et al.  Translational control in stress and apoptosis , 2005, Nature Reviews Molecular Cell Biology.

[34]  M. Hentze,et al.  Molecular mechanisms of translational control , 2004, Nature Reviews Molecular Cell Biology.

[35]  R. Wek,et al.  Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Jon R Lorsch,et al.  GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. , 2004, Journal of molecular biology.

[37]  D. Ron,et al.  Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells , 2003, The Journal of cell biology.

[38]  G. Gilliland,et al.  Crystal Structure of the YchF Protein Reveals Binding Sites for GTP and Nucleic Acid , 2003, Journal of bacteriology.

[39]  R. Paules,et al.  An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. , 2003, Molecular cell.

[40]  Detlef D. Leipe,et al.  Classification and evolution of P-loop GTPases and related ATPases. , 2002, Journal of molecular biology.

[41]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[42]  R. Bicknell,et al.  Hypoxia and oxidative stress in breast cancer: Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer , 2001, Breast Cancer Research.

[43]  T. Aw,et al.  Gadd153 Sensitizes Cells to Endoplasmic Reticulum Stress by Down-Regulating Bcl2 and Perturbing the Cellular Redox State , 2001, Molecular and Cellular Biology.

[44]  K. Kato,et al.  Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. , 2000, Cancer research.

[45]  G. Pavitt,et al.  Identification of Domains and Residues within the ɛ Subunit of Eukaryotic Translation Initiation Factor 2B (eIF2Bɛ) Required for Guanine Nucleotide Exchange Reveals a Novel Activation Function Promoted by eIF2B Complex Formation , 2000, Molecular and Cellular Biology.

[46]  E. M. Hannig,et al.  Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma‐subunit. , 1996, The EMBO journal.

[47]  D. Chakrabarti,et al.  Cloning and characterization of complementary DNA encoding the eukaryotic initiation factor 2-associated 67-kDa protein (p67). , 1993, The Journal of biological chemistry.

[48]  R. Benne,et al.  The activity of eukaryotic initiation factor eIF-2 in ternary complex formation with GTP and Met-tRNA. , 1979, The Journal of biological chemistry.

[49]  S. Goldenberg,et al.  Characterization of a novel Obg-like ATPase in the protozoan Trypanosoma cruzi. , 2009, International journal for parasitology.