The Universal $\ell^p$-Metric on Merge Trees

Adapting a definition given by Bjerkevik and Lesnick [9] for multiparameter persistence modules, we introduce an `-type extension of the interleaving distance on merge trees. We show that our distance is a metric, and that it upper-bounds the p-Wasserstein distance between the associated barcodes. For each p ∈ [1, ∞], we prove that this distance is stable with respect to cellular sublevel filtrations and that it is the universal (i.e., largest) distance satisfying this stability property. In the p = ∞ case, this gives a novel proof of universality for the interleaving distance on merge trees. 2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of computation → Unsupervised learning and clustering; Theory of computation → Computational geometry

[1]  Katharine Turner Medians of populations of persistence diagrams , 2013 .

[2]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[3]  Ulrich Bauer,et al.  Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs , 2014, SoCG.

[4]  Michael Lesnick,et al.  Universality of the Homotopy Interleaving Distance , 2017, ArXiv.

[5]  Ulrich Bauer,et al.  The Reeb Graph Edit Distance is Universal , 2018, SoCG.

[6]  Daniel Perez On the persistent homology of almost surely C0 stochastic processes , 2020, ArXiv.

[7]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[8]  Amit Patel,et al.  Generalized persistence diagrams , 2016, J. Appl. Comput. Topol..

[9]  Gunther H. Weber,et al.  Interleaving Distance between Merge Trees , 2013 .

[10]  Kyle Fox,et al.  Computing the Gromov-Hausdorff Distance for Metric Trees , 2015, ISAAC.

[11]  Katharine Turner,et al.  Hypothesis testing for topological data analysis , 2013, J. Appl. Comput. Topol..

[12]  Ulrich Bauer,et al.  Quasi-universality of Reeb graph distances , 2021, ArXiv.

[13]  Luis Scoccola Locally Persistent Categories And Metric Properties Of Interleaving Distances , 2020 .

[14]  David Cohen-Steiner,et al.  Lipschitz Functions Have Lp-Stable Persistence , 2010, Found. Comput. Math..

[15]  Ulrich Bauer,et al.  Measuring Distance between Reeb Graphs , 2013, SoCG.

[16]  Thomas Duquesne,et al.  Random Trees, Levy Processes and Spatial Branching Processes , 2002 .

[17]  Claudia Landi,et al.  The Edit Distance for Reeb Graphs of Surfaces , 2014, Discret. Comput. Geom..

[18]  Vin de Silva,et al.  Theory of interleavings on categories with a flow , 2017, 1706.04095.

[19]  Justin Curry,et al.  The fiber of the persistence map for functions on the interval , 2017, Journal of Applied and Computational Topology.

[20]  Universality of the Bottleneck Distance for Extended Persistence Diagrams , 2020, ArXiv.

[21]  Facundo Mémoli,et al.  Characterization, Stability and Convergence of Hierarchical Clustering Methods , 2010, J. Mach. Learn. Res..

[22]  T. Kanade,et al.  Extracting topographic terrain features from elevation maps , 1994 .

[23]  Peter Bubenik,et al.  Categorification of Persistent Homology , 2012, Discret. Comput. Geom..

[24]  Primoz Skraba,et al.  Wasserstein Stability for Persistence Diagrams , 2020, 2006.16824.

[25]  Julie Delon,et al.  Wasserstein Distances, Geodesics and Barycenters of Merge Trees , 2022, IEEE Transactions on Visualization and Computer Graphics.

[26]  Amit Patel,et al.  Categorified Reeb Graphs , 2015, Discret. Comput. Geom..

[27]  Elena Farahbakhsh Touli Fr'echet-Like Distances between Two Rooted Trees , 2021 .

[29]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[30]  Vin de Silva,et al.  Metrics for Generalized Persistence Modules , 2013, Found. Comput. Math..

[31]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[32]  Christopher M. Gold,et al.  Spatially ordered networks and topographic reconstructions , 1987, Int. J. Geogr. Inf. Sci..

[33]  Ulrich Bauer,et al.  Persistence Diagrams as Diagrams: A Categorification of the Stability Theorem , 2016, ArXiv.

[34]  Steve Oudot,et al.  Intrinsic Interleaving Distance for Merge Trees , 2019, ArXiv.

[35]  Yusu Wang,et al.  FPT-algorithms for computing Gromov-Hausdorff and interleaving distances between trees , 2018, ESA.

[36]  Masaki Kashiwara,et al.  Persistent homology and microlocal sheaf theory , 2017, J. Appl. Comput. Topol..

[37]  Jack Snoeyink,et al.  Simplifying flexible isosurfaces using local geometric measures , 2004, IEEE Visualization 2004.

[38]  Daniel Perez On C0-persistent homology and trees , 2020, ArXiv.

[39]  Talha Bin Masood,et al.  Edit Distance between Merge Trees , 2020, IEEE Transactions on Visualization and Computer Graphics.

[40]  J. Hartigan Consistency of Single Linkage for High-Density Clusters , 1981 .

[41]  Osman Berat Okutan,et al.  Decorated merge trees for persistent topology , 2021, Journal of Applied and Computational Topology.

[42]  Elizabeth Munch,et al.  The ℓ∞-Cophenetic Metric for Phylogenetic Trees as an Interleaving Distance , 2018, Association for Women in Mathematics Series.

[43]  David Sanchez,et al.  Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf , 2013, BMC Bioinformatics.

[44]  Yen-Chi Chen,et al.  Generalized cluster trees and singular measures , 2016, The Annals of Statistics.

[45]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.