An Epistemic Probabilistic Logic with Conditional Probabilities

[1]  Peter Haddawy,et al.  Anytime Deduction for Probabilistic Logic , 1994, Artif. Intell..

[2]  Zoran Ognjanovic,et al.  Probabilistic Common Knowledge Among Infinite Number of Agents , 2015, ECSQARU.

[3]  Ronald Fagin,et al.  The hierarchical approach to modeling knowledge and common knowledge , 1999, Int. J. Game Theory.

[4]  Joseph Y. Halpern,et al.  A Logic for Reasoning about Evidence , 2002, UAI.

[5]  Miodrag Raskovic,et al.  A Logic with Conditional Probabilities , 2004, JELIA.

[6]  Zoran Ognjanovic,et al.  Logics with lower and upper probability operators , 2017, Int. J. Approx. Reason..

[7]  Miodrag Raskovic,et al.  Probability Logics , 2016, Springer International Publishing.

[8]  Zoran Ognjanovic,et al.  A propositional linear time logic with time flow isomorphic to ω2 , 2013, J. Appl. Log..

[9]  Ronald Fagin,et al.  Reasoning about knowledge and probability , 1988, JACM.

[10]  Dragan Doder,et al.  Probabilistic Logics with Independence and Confirmation , 2017, Stud Logica.

[11]  Ronald Fagin,et al.  A logic for reasoning about probabilities , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[12]  Dragan Doder,et al.  A logic with conditional probability operators , 2010 .

[13]  Frank Wolter,et al.  First Order Common Knowledge Logics , 2000, Stud Logica.

[14]  Zoran Ognjanovic,et al.  A first-order conditional probability logic , 2012, Log. J. IGPL.

[15]  Lluis Godo,et al.  A Logic for Reasoning About Coherent Conditional Probability: A Modal Fuzzy Logic Approach , 2004, JELIA.