A Complete High-Resolution Coastline of Antarctica Extracted from Orthorectified Radarsat SAR Imagery

A complete, high-resolution coastline of Antarctica, extracted from an orthorectified mosaic of Radarsat-1 synthetic aperture radar (SAR) images through a sequence of automated image processing algorithms, is presented. A locally adaptive thresholding method is used to segment the orthorectified SAR images, while image-object formation and labeling, and edgetracing techniques are used to process the segmented images into vector-based cartographic products of coastline, defined here as the boundary between continental ice or rock exposures and sea ice covered ocean. The absolute accuracy of planimetric positioning of the resultant coastline is estimated to better than 130 m, and its spatial resolution (25 m) is adequate for supporting cartographic and scientific applications at 1:50,000 scale. This radar-image-derived coastline gives an accurate description of geometric shape and glaciological characteristics of the Antarctic coasts and also provides a precise benchmark for future change-detection studies.

[1]  K. C. Jezek,et al.  RADARSAT: the Antarctic Mapping Project , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[2]  Jong-Sen Lee Speckle suppression and analysis for synthetic aperture radar images , 1986 .

[3]  H. Liu,et al.  Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods , 2004 .

[4]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[5]  David C. Mason,et al.  Accurate and efficient determination of the shoreline in ERS-1 SAR images , 1996, IEEE Trans. Geosci. Remote. Sens..

[6]  A. Fox,et al.  Measured properties of the Antarctic ice sheet derived from the SCAR Antarctic digital database , 1994, Polar Record.

[7]  L. Norikane,et al.  RADARSAT Antarctica Mapping System: system overview , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[8]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[9]  J. G. Ferrigno,et al.  Coastal-change and glaciological maps of Antarctica , 1995, Annals of Glaciology.

[10]  Kenneth C. Jezek,et al.  Mapping ice sheet margins from ERS-1 SAR and SPOT imagery , 1999 .

[11]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[12]  John C. Curlander,et al.  A post-processing system for automated rectification and registration of spaceborne SAR imagery† , 1987 .

[13]  Jim R. Parker,et al.  Algorithms for image processing and computer vision , 1996 .

[14]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  I. Allison,et al.  C. Swithinbank 1988. Satellite image atlas of glaciers of the world: Antarctica. Washington, DC, United States Government Printing Office. (United States Geological Survey Professional Paper 1386-B.) , 1990 .

[16]  J. Muller,et al.  RADARSAT: the Antarctic Mapping Project , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[17]  Kenneth C. Jezek,et al.  Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery , 1999, Annals of Glaciology.

[18]  A. C. Seijmonsbergen Atlas of Satellite observations related to global change , 1995 .

[19]  K. C. Jezek,et al.  Ice shelf advance and retreat rates along the coast of Queen Maud Land, Antarctica , 2001 .

[20]  John C. Curlander,et al.  An automated system for mosaicking spaceborne SAR imagery , 1990 .

[21]  K. Jezek,et al.  Improving a digital elevation model of Antarctica using radar remote sensing data and GIS techniques 1 , 1999 .

[22]  R. Heelis,et al.  Regional, scale size, and interplanetary magnetic field variability of magnetic field and ion drift structures in the high‐latitude ionosphere , 1999 .

[23]  Franz Leberl,et al.  Radargrammetric image processing , 1990 .

[24]  T. Scambos,et al.  The link between climate warming and break-up of ice shelves in the Antarctic Peninsula , 2000, Journal of Glaciology.

[25]  Jong-Sen Lee,et al.  Coastline Detection And Tracing In SAr Images , 1990 .

[26]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  C. Chow,et al.  Automatic boundary detection of the left ventricle from cineangiograms. , 1972, Computers and biomedical research, an international journal.

[28]  Bobby R. Hunt,et al.  Extraction of shoreline features by neural nets and image processing , 1991 .

[29]  J. H. Mercer West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster , 1978, Nature.

[30]  Richard S. Williams,et al.  Satellite image atlas of glaciers of the world , 1988 .

[31]  Leen-Kiat Soh,et al.  A comprehensive, automated approach to determining sea ice thickness from SAR data , 1995, IEEE Trans. Geosci. Remote. Sens..

[32]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Jong-Sen Lee,et al.  Speckle Suppression and Analysis for Synthetic Aperture Radar Images , 1985, Optics & Photonics.

[34]  Kenneth C. Jezek,et al.  RADARSAT-1 Antarctic Mapping Project: change-detection and surface velocity campaign , 2002, Annals of Glaciology.

[35]  M. Naraghi,et al.  Geometric rectification of radar imagery using digital elevation models , 1983 .

[36]  Hongxing Liu,et al.  Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach , 1999 .

[37]  H. Johnsen,et al.  Geocoding of fast-delivery ERS-l SAR image mode product using DEM data , 1995 .