Limited-Area Ensemble-Based Data Assimilation

Ensemble-baseddataassimilationis astateestimation technique thatusesshort-termensembleforecaststo estimate flow-dependent background error covariance and is best known by varying forms of ensemble Kalman filters (EnKFs). The EnKF has recently emerged as one of the primary alternatives to the variational data assimilation methods widely used in both global and limited-area numerical weather prediction models. In addition to comparing the EnKF with variational methods, this article reviews recent advances and challenges in the development and applications of the EnKF, including its hybrid with variational methods, in limited-area models that resolve weather systems from convective to meso- and regional scales.

[1]  Julia C. Hargreaves,et al.  Parameter estimation in an atmospheric GCM using the Ensemble , 2005 .

[2]  T. Palmer,et al.  ENSEMBLES: A new multi‐model ensemble for seasonal‐to‐annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs , 2009 .

[3]  Ryan D. Torn,et al.  A Data Assimilation Case Study Using a Limited-Area Ensemble Kalman Filter , 2007 .

[4]  N. Seaman,et al.  A Comparison Study of Convective Parameterization Schemes in a Mesoscale Model , 1997 .

[5]  Fuqing Zhang,et al.  Ensemble‐based data assimilation for thermally forced circulations , 2005 .

[6]  P. Houtekamer,et al.  Ensemble size, balance, and model-error representation in an ensemble Kalman filter , 2002 .

[7]  Ryan D. Torn,et al.  Ensemble-Based Sensitivity Analysis , 2008 .

[8]  Jerry M. Straka,et al.  Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part II: Impact of Polarimetric Data on Storm Analysis , 2008 .

[9]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[10]  X. Deng,et al.  Model Error Representation in an Operational Ensemble Kalman Filter , 2009 .

[11]  Peter Lynch,et al.  Initialization of the HIRLAM Model Using a Digital Filter , 1992 .

[12]  Fuqing Zhang,et al.  Ensemble-based data assimilation and targeted observation of a chemical tracer in a sea breeze model , 2007 .

[13]  Ying-Hwa Kuo,et al.  Predicting Typhoon Morakot’s Catastrophic Rainfall with a Convection-Permitting Mesoscale Ensemble System , 2010 .

[14]  Thomas Schlatter,et al.  Statistical Properties of Three-Hour Prediction “Errors” Derived from the Mesoscale Analysis and Prediction System , 1994 .

[15]  Yonghui Weng Predicting Typhoon Morakot's Catastrophic Rainfall and Flooding With a Cloud-Scale Ensemble System , 2010 .

[16]  Jeffrey L. Anderson Spatially and temporally varying adaptive covariance inflation for ensemble filters , 2009 .

[17]  T. Hamill,et al.  On the Theoretical Equivalence of Differently Proposed Ensemble 3DVAR Hybrid Analysis Schemes , 2007 .

[18]  C. Bishop,et al.  Cloud-Resolving Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observations with an Ensemble Kalman Filter , 2009 .

[19]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[20]  Timothy J. Hoar,et al.  Assimilation of Surface Pressure Observations Using an Ensemble Filter in an Idealized Global Atmospheric Prediction System , 2005 .

[21]  Meng Zhang,et al.  Advanced Data Assimilation for Cloud-Resolving Hurricane Initialization and Prediction , 2011, Computing in Science & Engineering.

[22]  Fuqing Zhang,et al.  Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter (EnKF) , 2010 .

[23]  M. Buehner,et al.  Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part I: Description and Single-Observation Experiments , 2010 .

[24]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[25]  Louis J. Wicker,et al.  Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments , 2004 .

[26]  Chris Snyder,et al.  Evaluation of a Nonlocal Quasi-Phase Observation Operator in Assimilation of CHAMP Radio Occultation Refractivity with WRF , 2008 .

[27]  S. Zhang,et al.  Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model , 2003 .

[28]  P. Houtekamer,et al.  An Adaptive Ensemble Kalman Filter , 2000 .

[29]  Brian J. Etherton Preemptive Forecasts Using an Ensemble Kalman Filter , 2007 .

[30]  Chris Snyder,et al.  Ensemble Kalman Filter Assimilation of Fixed Screen-Height Observations in a Parameterized PBL , 2005 .

[31]  Fuqing Zhang,et al.  Factors Affecting the Predictability of Hurricane Humberto (2007) , 2010 .

[32]  D. M. Barker,et al.  Southern High-Latitude Ensemble Data Assimilation in the Antarctic Mesoscale Prediction System , 2005 .

[33]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[34]  Louis J. Wicker,et al.  Additive Noise for Storm-Scale Ensemble Data Assimilation , 2009 .

[35]  Mark A. Liniger,et al.  Can multi‐model combination really enhance the prediction skill of probabilistic ensemble forecasts? , 2007 .

[36]  Chun,et al.  Assimilation of Tropical Cyclone Track and Structure Based on the Ensemble Kalman Filter (EnKF) , 2010 .

[37]  Mingjing Tong,et al.  Ensemble kalman filter assimilation of doppler radar data with a compressible nonhydrostatic model : OSS experiments , 2005 .

[38]  Juanzhen Sun,et al.  Impacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter , 2004 .

[39]  Chris Snyder,et al.  A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part II: Short-Range Ensemble Forecasts , 2010 .

[40]  B. Ancell,et al.  Comparing Adjoint- and Ensemble-Sensitivity Analysis with Applications to Observation Targeting , 2007 .

[41]  Jonathan D. Beezley,et al.  Morphing ensemble Kalman filters , 2007, ArXiv.

[42]  Jean-Noël Thépaut,et al.  A Comparison of Variational and Ensemble-Based Data Assimilation Systems for Reanalysis of Sparse Observations , 2009 .

[43]  Q. Xiao,et al.  An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part II: Observing System Simulation Experiments with Advanced Research WRF (ARW) , 2009 .

[44]  Istvan Szunyogh,et al.  Evaluation of a Strategy for the Assimilation of Satellite Radiance Observations with the Local Ensemble Transform Kalman Filter , 2011 .

[45]  P. L. Houtekamer,et al.  A System Simulation Approach to Ensemble Prediction , 1996 .

[46]  E. Kalnay,et al.  Four-dimensional ensemble Kalman filtering , 2004 .

[47]  Chris Snyder,et al.  Assimilating vortex position with an ensemble kalman filter , 2005 .

[48]  Ryan D. Torn,et al.  Performance Characteristics of a Pseudo-Operational Ensemble Kalman Filter , 2008 .

[49]  Chris Snyder,et al.  ENSEMBLE-BASED DATA ASSIMILATION , 2007 .

[50]  Meng Zhang Intercomparison and coupling of ensemble-based and variational data assimilation schemes , 2010 .

[51]  M. Buehner,et al.  Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part II: One-Month Experiments with Real Observations , 2010 .

[52]  Andrew P. Morse,et al.  DEVELOPMENT OF A EUROPEAN MULTIMODEL ENSEMBLE SYSTEM FOR SEASONAL-TO-INTERANNUAL PREDICTION (DEMETER) , 2004 .

[53]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[54]  Fuqing Zhang,et al.  Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I: Perfect Model Experiments , 2006 .

[55]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[56]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[57]  Ryan D. Torn,et al.  Ensemble Data Assimilation Applied to RAINEX Observations of Hurricane Katrina (2005) , 2009 .

[58]  Q. Xiao,et al.  An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part I: Technical Formulation and Preliminary Test , 2008 .

[59]  Ryan D. Torn,et al.  Boundary Conditions for Limited-Area Ensemble Kalman Filters , 2006 .

[60]  T. Hamill,et al.  Using Improved Background-Error Covariances from an Ensemble Kalman Filter for Adaptive Observations , 2002 .

[61]  Fuqing Zhang,et al.  Intercomparison of an Ensemble Kalman Filter with Three- and Four-Dimensional Variational Data Assimilation Methods in a Limited-Area Model over the Month of June 2003 , 2011 .

[62]  David J. Stensrud,et al.  Impact of Phased-Array Radar Observations over a Short Assimilation Period: Observing System Simulation Experiments Using an Ensemble Kalman Filter , 2010 .

[63]  Ryan D. Torn,et al.  Initial Condition Sensitivity of Western Pacific Extratropical Transitions Determined Using Ensemble-Based Sensitivity Analysis , 2009 .

[64]  Martin Ehrendorfer,et al.  A review of issues in ensemble-based Kalman filtering , 2007 .

[65]  Chris Snyder,et al.  A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments , 2008 .

[66]  Fuqing Zhang,et al.  Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part IV: Comparison with 3DVAR in a Month-Long Experiment , 2007 .

[67]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[68]  Thomas M. Hamill,et al.  Predictability of Weather and Climate: Ensemble-based atmospheric data assimilation , 2006 .

[69]  David J. Stensrud,et al.  The Impact of Assimilating Surface Pressure Observations on Severe Weather Events in a WRF Mesoscale Ensemble System , 2010 .

[70]  Thomas M. Hamill,et al.  Ensemble Data Assimilation with the NCEP Global Forecast System , 2008 .

[71]  J. Kepert Covariance localisation and balance in an Ensemble Kalman Filter , 2009 .

[72]  Eugenia Kalnay,et al.  Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter , 2009 .

[73]  L. Berre,et al.  Filtering of Background Error Variances and Correlations by Local Spatial Averaging: A Review , 2010 .

[74]  Jeffrey L. Anderson,et al.  Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation , 2007 .

[75]  M. Buehner Ensemble‐derived stationary and flow‐dependent background‐error covariances: Evaluation in a quasi‐operational NWP setting , 2005 .

[76]  J. Yorke,et al.  Four-dimensional ensemble Kalman filtering , 2004 .

[77]  Craig H. Bishop,et al.  Flow‐adaptive moderation of spurious ensemble correlations and its use in ensemble‐based data assimilation , 2007 .

[78]  S. Barnes,et al.  A Technique for Maximizing Details in Numerical Weather Map Analysis , 1964 .

[79]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[80]  Massimo Bonavita,et al.  Ensemble data assimilation with the CNMCA regional forecasting system , 2010 .

[81]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[82]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[83]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[84]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part I: Sensitivity Analysis and Parameter Identifiability , 2008 .

[85]  Jidong Gao,et al.  An Efficient Dual-resolution Approach for Ensemble Data Assimilation and Tests with Simulated Doppler Radar Data , 2022 .

[86]  Massimo Bonavita,et al.  The ensemble Kalman filter in an operational regional NWP system: preliminary results with real observations , 2008 .

[87]  David J. Stensrud,et al.  Using Precipitation Observations in a Mesoscale Short-Range Ensemble Analysis and Forecasting System , 2008 .

[88]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[89]  Xue Wei,et al.  Reanalysis without Radiosondes Using Ensemble Data Assimilation , 2004 .

[90]  P. L. Houtekamer,et al.  Assimilation with an Ensemble Kalman Filter of Synthetic Radial Wind Data in Anisotropic Turbulence: Perfect Model Experiments , 2006 .

[91]  Guifu Zhang,et al.  Simultaneous Estimation of Microphysical Parameters and the Atmospheric State Using Simulated Polarimetric Radar Data and an Ensemble Kalman Filter in the Presence of an Observation Operator Error , 2010 .

[92]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[93]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[94]  J. Whitaker,et al.  Accounting for the Error due to Unresolved Scales in Ensemble Data Assimilation: A Comparison of Different Approaches , 2005 .

[95]  Istvan Szunyogh,et al.  Univariate and Multivariate Assimilation of AIRS Humidity Retrievals with the Local Ensemble Transform Kalman Filter , 2009 .

[96]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[97]  Chris Snyder,et al.  A Comparison between the 4DVAR and the Ensemble Kalman Filter Techniques for Radar Data Assimilation , 2005 .

[98]  Jeffrey L. Anderson EXPLORING THE NEED FOR LOCALIZATION IN ENSEMBLE DATA ASSIMILATION USING A HIERARCHICAL ENSEMBLE FILTER , 2007 .

[99]  Fuqing Zhang,et al.  Dynamics and Structure of Mesoscale Error Covariance of a Winter Cyclone Estimated through Short-Range Ensemble Forecasts , 2005 .

[100]  Huijuan Lu,et al.  Time-Expanded Sampling for Ensemble Kalman Filter: Assimilation Experiments with Simulated Radar Observations , 2008 .

[101]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[102]  Christopher M. Danforth,et al.  Accounting for Model Errors in Ensemble Data Assimilation , 2009 .

[103]  M. Buehner,et al.  Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .

[104]  R. Rotunno,et al.  Effects of Moist Convection on Mesoscale Predictability , 2003 .

[105]  Istvan Szunyogh,et al.  A local ensemble transform Kalman filter data assimilation system for the NCEP global model , 2008 .

[106]  Jeffrey L. Anderson,et al.  Improved Vertical Covariance Estimates for Ensemble-Filter Assimilation of Near-Surface Observations , 2007 .

[107]  David J. Stensrud,et al.  Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems , 2000 .

[108]  Ryan D. Torn,et al.  Ensemble Synoptic Analysis , 2008 .

[109]  Peter Lynch,et al.  Diabatic Digital-Filtering Initialization: Application to the HIRLAM Model , 1993 .

[110]  Takemasa Miyoshi,et al.  Applying a Four-dimensional Local Ensemble Transform Kalman Filter (4D-LETKF) to the JMA Nonhydrostatic Model (NHM) , 2006 .

[111]  P. L. Houtekamer,et al.  Ensemble Kalman filtering , 2005 .

[112]  Chris Snyder,et al.  A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment , 2008 .

[113]  C. Snyder,et al.  A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses , 2009 .

[114]  Peter J. Bickel,et al.  Comparison of Ensemble Kalman Filters under Non-Gaussianity , 2010 .

[115]  Ryan D. Torn,et al.  Generated using version 3 . 0 of the official AMS L A TEX template Ensemble-based Sensitivity Analysis applied to African Easterly Waves , 2008 .

[116]  T. N. Krishnamurti,et al.  Improved Weather and Seasonal Climate Forecasts from Multimodel Superensemble. , 1999, Science.

[117]  Yoshiaki Sato,et al.  Assimilating Satellite Radiances with a Local Ensemble Transform Kalman Filter (LETKF) Applied to the JMA Global Model (GSM) , 2007 .

[118]  James A. Hansen,et al.  Alignment Error Models and Ensemble-Based Data Assimilation , 2005 .

[119]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation for treatment of mesoscale model error: A real‐data study , 2010 .

[120]  David J. Stensrud,et al.  Surface Data Assimilation Using an Ensemble Kalman Filter Approach with Initial Condition and Model Physics Uncertainties , 2005 .

[121]  Fuqing Zhang,et al.  Coupling ensemble Kalman filter with four-dimensional variational data assimilation , 2009 .

[122]  C. Snyder,et al.  Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter , 2003 .

[123]  I. Orlanski A rational subdivision of scales for atmospheric processes , 1975 .

[124]  Munehiko Yamaguchi,et al.  Intercomparison of Targeted Observation Guidance for Tropical Cyclones in the Northwestern Pacific , 2009 .

[125]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation with MM5 , 2006 .

[126]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[127]  Takemasa Miyoshi,et al.  Local Ensemble Transform Kalman Filtering with an AGCM at a T159/L48 Resolution , 2007 .

[128]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments , 2008 .

[129]  Fuqing Zhang,et al.  Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part III: Comparison with 3DVAR in a Real-Data Case Study , 2008 .

[130]  Malaquias Peña,et al.  Controlling Noise in Ensemble Data Assimilation Schemes , 2010 .

[131]  Andrew C. Lorenc,et al.  The potential of the ensemble Kalman filter for NWP—a comparison with 4D‐Var , 2003 .