Connection formulas between Coulomb wave functions

The mathematical relations between the regular Coulomb function $F_{\eta\ell}(\rho)$ and the irregular Coulomb functions $H^\pm_{\eta\ell}(\rho)$ and $G_{\eta\ell}(\rho)$ are obtained in the complex plane of the variables $\eta$ and $\rho$ for integer or half-integer values of $\ell$. These relations, referred to as "connection formulas", form the basis of the theory of Coulomb wave functions, and play an important role in many fields of physics, especially in the quantum theory of charged particle scattering. As a first step, the symmetry properties of the regular function $F_{\eta\ell}(\rho)$ are studied, in particular under the transformation $\ell\mapsto-\ell-1$, by means of the modified Coulomb function $\Phi_{\eta\ell}(\rho)$, which is entire in the dimensionless energy $\eta^{-2}$ and the angular momentum $\ell$. Then, it is shown that, for integer or half-integer $\ell$, the irregular functions $H^\pm_{\eta\ell}(\rho)$ and $G_{\eta\ell}(\rho)$ can be expressed in terms of the derivatives of $\Phi_{\eta,\ell}(\rho)$ and $\Phi_{\eta,-\ell-1}(\rho)$ with respect to $\ell$. As a consequence, the connection formulas directly lead to the description of the singular structures of $H^\pm_{\eta\ell}(\rho)$ and $G_{\eta\ell}(\rho)$ at complex energies in their whole Riemann surface. The analysis of the functions is supplemented by novel graphical representations in the complex plane of $\eta^{-1}$.

[1]  M. Seaton Coulomb functions for attractive and repulsive potentials and for positive and negative energies , 2002 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  R. Newton Scattering theory of waves and particles , 1966 .

[4]  E. Wegert Visual Complex Functions , 2012 .

[5]  H. Buchholz The Confluent Hypergeometric Function , 2021, A Course of Modern Analysis.

[6]  J. Humblet THEORY OF NUCLEAR REACTIONS. IV. COULOMB INTERACTIONS IN THE CHANNELS AND PENETRATION FACTORS , 1964 .

[7]  Irene A. Stegun,et al.  Generation of Coulomb Wave Functions by Means of Recurrence Relations , 1955 .

[8]  A. R. Barnett,et al.  COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments , 1985 .

[9]  N. Michel Precise Coulomb wave functions for a wide range of complex l, eta and z , 2007, Comput. Phys. Commun..

[10]  P. O. Fröman,et al.  Coulomb wave functions with complex values of the variable and the parameters , 1999 .

[11]  M. Seaton,et al.  Coulomb functions analytic in the energy , 1984 .

[12]  A. Kadyrov,et al.  Extrapolation of scattering data to the negative-energy region. II. Applicability of effective range functions within an exactly solvable model , 2017, 1710.10767.

[13]  Propagation of gravitational waves from slow motion sources in a Coulomb-type potential , 1997, gr-qc/9711009.

[14]  J. Humblet Analytical structure and properties of Coulomb wave functions for real and complex energies , 1984 .

[15]  F. L. Yost,et al.  Coulomb Wave Functions in Repulsive Fields , 1936 .

[16]  Coulomb functions with complex angular momenta , 1984 .

[17]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[18]  Jean-Marc Sparenberg,et al.  Phase-shift parametrization and extraction of asymptotic normalization constants from elastic-scattering data , 2017 .

[19]  Elias Wegert,et al.  Visual Complex Functions: An Introduction with Phase Portraits , 2012 .

[20]  C. Joachain,et al.  Quantum Collision Theory , 1984 .

[21]  Kurt Siegfried Kölbig,et al.  Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. , 1984 .

[22]  S. Rakityansky,et al.  Analytic structure of the multichannel Jost matrix for potentials with Coulombic tails , 2013 .

[23]  D. Gaspard,et al.  Effective-range function methods for charged particle collisions , 2018, 1801.08980.

[24]  J. Humblet Bessel function expansions of Coulomb wave functions , 1985 .

[25]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2005, 1203.5425.

[26]  H. V. Haeringen,et al.  Charged-particle interactions : theory and formulas , 1985 .

[27]  D. Baye,et al.  Zero-energy determination of the astrophysical S factor and effective-range expansions , 2000 .

[28]  B. Tromborg,et al.  Coulomb corrections in non-relativistic scattering , 1973 .

[29]  M. Seaton,et al.  Quantum defect theory , 1983, Molecular Applications of Quantum Defect Theory.

[30]  Vitor Cardoso,et al.  Quasinormal ringing of Kerr black holes: The excitation factors , 2006 .

[31]  A. R. Barnett,et al.  Coulomb and Bessel functions of complex arguments and order , 1986 .