Design, synthesis and DNA/RNA binding studies of nucleic acids comprising stereoregular and acyclic polycarbamate backbone: polycarbamate nucleic acids (PCNA).

The designed, chiral, acyclic polycarbamate nucleic acids (PCNA) exhibited sequence and orientation specific binding to nucleic acids. Complexes of PCNA with DNA were as stable as PNA:DNA complexes and those with RNA were as stable as natural DNA:RNA complexes.

[1]  R. T. Walker,et al.  Synthetic-analogues of polynucleotides XII. Synthesis of thymidine derivatives containing an oxyacetamido- or an oxyformamido-linkage instead of a phosphodiester group. , 1974, Journal of the Chemical Society. Perkin transactions 1.

[2]  T. Vilaivan,et al.  Hybridization of pyrrolidinyl peptide nucleic acids and DNA: selectivity, base-pairing specificity, and direction of binding. , 2006, Organic letters.

[3]  Peter E. Nielsen,et al.  Peptide Nucleic Acids (PNAs) Containing Thymine Monomers Derived from Chiral Amino Acids: Hybridization and Solubility Properties of D‐Lysine PNA , 1996 .

[4]  John M. Beierle,et al.  Self-Assembling Sequence-Adaptive Peptide Nucleic Acids , 2009, Science.

[5]  P. Nielsen,et al.  Unique properties of purine/pyrimidine asymmetric PNA.DNA duplexes: differential stabilization of PNA.DNA duplexes by purines in the PNA strand. , 2006, Biophysical journal.

[6]  M. Gait,et al.  Targeting the HIV-1 RNA leader sequence with synthetic oligonucleotides and siRNA: chemistry and cell delivery. , 2006, Biochimica et biophysica acta.

[7]  J. Kjellberg,et al.  Regioselective alkylation of 6-(β-methoxyethoxy)guanine to give the 9-alkylguanine derivative , 1986 .

[8]  J. Summerton,et al.  Uncharged stereoregular nucleic acid analogs. 1. Synthesis of a cytosine-containing oligomer with carbamate internucleoside linkages , 1987 .

[9]  Hana Vaisocherová,et al.  Structural features of a central mismatch in oligonucleotide hybrid duplexes visualized via Raman spectroscopy: Model system for evaluation of potential “antisense” drugs , 2005, Biopolymers.

[10]  J. Micklefield,et al.  Mixed-sequence pyrrolidine-amide oligonucleotide mimics: Boc(Z) synthesis and DNA/RNA binding properties. , 2007, Organic & biomolecular chemistry.

[11]  S. Agrawal,et al.  Oligonucleotides Containing Acyclic Nucleoside Analogues with Carbamate Internucleoside Linkages , 1995 .

[12]  E. Lesnik,et al.  2′-O-Carbamate-containing oligonucleotides: synthesis and properties , 2001 .

[13]  Vaijayanti A. Kumar,et al.  Sugar-thioacetamide backbone in oligodeoxyribonucleosides for specific recognition of nucleic acids. , 2006, Chemical communications.

[14]  T. Govindaraju,et al.  Backbone-extended pyrrolidine peptide nucleic acids (bepPNA): design, synthesis and DNA/RNA binding studies. , 2005, Chemical communications.

[15]  G. Fields,et al.  Solvation effects in solid-phase peptide synthesis , 1991 .

[16]  P. Nielsen,et al.  Antisense properties of duplex- and triplex-forming PNAs. , 1996, Nucleic acids research.

[17]  Jens Kurreck,et al.  Antisense technologies. Improvement through novel chemical modifications. , 2003, European journal of biochemistry.

[18]  J. Summerton,et al.  Uncharged stereoregular nucleic acid analogs: 2. Morpholino nucleoside oligomers with carbamate internucleoside linkages. , 1989, Nucleic acids research.

[19]  J. Pokorski,et al.  (S,S)-trans-cyclopentane-constrained peptide nucleic acids. a general backbone modification that improves binding affinity and sequence specificity. , 2004, Journal of the American Chemical Society.

[20]  Vaijayanti A. Kumar,et al.  Pyrrolidine carbamate nucleic acids: synthesis and DNA binding studies. , 2003, Bioorganic & medicinal chemistry.

[21]  K. Gogoi,et al.  Synthesis and RNA binding selectivity of oligonucleotides modified with five-atom thioacetamido nucleic acid backbone structures. , 2007, Organic letters.

[22]  K. Altmann,et al.  RNA-Binding affinities and crystal structure of oligonucleotides containing five-atom amide-based backbone structures. , 2006, Biochemistry.

[23]  H. Weith,et al.  Synthesis and characterization of a carbamate-linked oligonucleoside , 1987 .

[24]  M. Egholm,et al.  Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. , 1991, Science.

[25]  S. Obika,et al.  Properties of novel oligonucleotide analogues containing an acyclic nucleoside and a carbamate linkage , 1996 .

[26]  Vaijayanti A. Kumar,et al.  Effect of chirality of L/D-proline and prochiral glycine as the linker amino acid in five-atom linked thymidinyl-(alpha-amino acid)-thymidine dimers. , 2009, Chemical communications.

[27]  J. Micklefield,et al.  RNA-selective cross-pairing of backbone-extended pyrrolidine-amide oligonucleotide mimics (bePOMs). , 2008, Organic & biomolecular chemistry.

[28]  J. Micklefield,et al.  Backbone modification of nucleic acids: synthesis, structure and therapeutic applications. , 2001, Current medicinal chemistry.

[29]  N. Howarth,et al.  Peptides derived from nucleoside beta-amino acids form an unusual 8-helix. , 2008, Chemical communications.

[30]  B. Cuenoud,et al.  Extensive sugar modification improves triple helix forming oligonucleotide activity in vitro but reduces activity in vivo. , 2007, Biochemistry.

[31]  W. Mungall,et al.  Carbamate analogues of oligonucleotides. , 1977, The Journal of organic chemistry.

[32]  E. Kaiser,et al.  Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. , 1970, Analytical biochemistry.

[33]  T. Govindaraju,et al.  cis-Cyclopentyl PNA (cpPNA) as constrained chiral PNA analogues: stereochemical dependence of DNA/RNA hybridization. , 2004, Chemical communications.