Performance characterization of a four-frame nanosecond gated hybrid CMOS image sensor

In this paper characterization data for two versions of a gated hybrid-CMOS image sensor are presented. These sensors, referred to as Icarus and Icarus 2, are two and four frame burst mode cameras respectively, with 1024 x 512 pixel array and 25μm spatial resolution. Designed and built by Sandia National Laboratory for the Ultra-Fast X-ray Imager (UXI) program, they have been used to capture X-ray images at LLNL’s National Ignition Facility and during High Energy Density Physics (HEDP) experiments. Performance data including timing mode, oscillator performance, and gate widths for the Icarus series sensors is covered; this is the first reported data for the four frame Icarus 2 sensors. Additional impacts on device performance due to diode passivation layer for low energy electron sensitivity and low signal linearity are presented. A discussion of oscillator performance, bond wire inductance, and linear response is also covered.