VARIATIONS OF LAND USE AND IRRIGATION FOR NEXT DECADES UNDER DIFFERENT SCENARIOS

VARIATIONS OF LAND USE AND IRRIGATION FOR NEXT DECADES UNDER DIFFERENT SCENARIOS MOHAMMAD VALIPOUR¹ ¹Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. Email: vali-pour@hotmail.com  1 ABSTRACT The goal of this paper is estimation of area equipped for irrigation in Americas in 2035 and 2060 using study of agricultural water management during 1962 to 2011. For this purpose, all necessary information was gathered from Food and Agriculture Organization of the United Nations (FAO) and was checked using The World Bank Group (WBG). Among all presented data in the FAO database, 10 indexes were selected (due to more importance and more availability for all the regions in Americas). These indexes are permanent crops per cultivated area (%), rural population per total population (%), total economically active population in agriculture per total economically active population (%), human development index (HDI), national rainfall index (NRI) (mm/yr), value added to gross domestic product (GDP) by agriculture (%), irrigation water requirement (mm/yr), percent of total cultivated area drained (%), difference between NIR and irrigation water requirement (mm/yr), and area equipped for irrigation per cultivated area (%). These indexes were analyzed for all 5 regions in the study area and amount of area equipped for irrigation per cultivated area (10th index) was estimated by three different scenarios and using the other 9 indexes. Keywords: agricultural water management, Americas, FAO, irrigation, macroeconomic policies, optimum decision, sustainable development  VALIPOUR, M.VARIAÇÕES DO USO DA TERRA E IRRIGAÇÃO PARA AS PRÓXIMAS DÉCADAS EM DIFERENTES CENÁRIOS  2 RESUMO O objetivo do presente trabalho é estimar a área equipada para irrigação nas Américas nos anos de 2035 e 2060 através do estudo da gestão da água agrícola no período de 1962 a 2011. Para isso, todas as informações necessárias foram obtidas da Organização das Nações Unidas para Agricultura e Alimentação (FAO) e foram verificado através do Grupo Banco Mundial (WBG). Entre todos os dados apresentados na base de dados da FAO, foram selecionados 10 índices (devido à maior importância e maior disponibilidade para todas as regiões das Américas). Estes índices correspondem a culturas permanentes por área cultivada (%), população rural com relação à população total (%), população economicamente ativa na agricultura com relação à população economicamente ativa total (%), índice de desenvolvimento humano (IDH), índice nacional de pluviosidade (NRI) (mm/ano), valor agregado ao Produto Interno Bruto (PIB) pela agricultura (%), necessidade de água de irrigação (mm/ano), porcentagem da área cultivada drenada total (%) diferença entre NRI e necessidade de água de irrigação e área equipada para irrigação por área cultivada (%). Estes índices foram analisados para todas as 5 regiões da área de estudo e a quantidade de área equipada para irrigação por área cultivada (10º índice) foi estimada através de três cenários diferentes, utilizando os outros 9 índices. Os resultados mostram que as mudanças da área equipada para irrigação são de 9,1% a 26,3% e de 17,6% a 51,3% em 2035 e 2060, respectivamente. Palavras-chave: gestão agrícola da água, Américas, FAO, irrigação, políticas macroeconômicas, decisão ideal, desenvolvimento sustentável

[1]  J. Barragán,et al.  Irrigation Systems: Water Conservation , 2020 .

[2]  Mohammad Valipour,et al.  Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events , 2017 .

[3]  N. Ramankutty,et al.  Closing yield gaps through nutrient and water management , 2012, Nature.

[4]  Mohammad Valipour HYDRO-MODULE DETERMINATION FOR VANAEI VILLAGE IN ESLAM ABAD GHARB, IRAN , 2012 .

[5]  Intizar Hussain Pro-poor intervention strategies in irrigated agriculture in Asia: issues, lessons, options and guidelines† , 2007 .

[6]  Mohammad Valipour,et al.  Retracted: Comparative Evaluation of Radiation-Based Methods for Estimation of Potential Evapotranspiration , 2015 .

[7]  V. Singh,et al.  A review of drought concepts , 2010 .

[8]  David Molden,et al.  Measuring and enhancing the value of agricultural water in irrigated river basins , 2007, Irrigation Science.

[9]  M. Valipour,et al.  Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir , 2013 .

[10]  Mohammad Valipour,et al.  Estimation of actual evapotranspiration by using MODIS images (a case study: Tajan catchment) , 2015 .

[11]  M. Valipour Evolution of Irrigation-Equipped Areas as Share of Cultivated Areas , 2013 .

[12]  R. Lal,et al.  POTENTIAL OF DESERTIFICATION CONTROL TO SEQUESTER CARBON AND MITIGATE THE GREENHOUSE EFFECT , 2022 .

[13]  Herve Plusquellec,et al.  Is the daunting challenge of irrigation achievable? , 2002 .

[14]  J. Frankenberger,et al.  Development and application of a distributed modeling approach to assess the watershed-scale impact of drainage water management , 2012 .

[15]  Mohammad Valipour,et al.  Investigation of Valiantzas’ evapotranspiration equation in Iran , 2015, Theoretical and Applied Climatology.

[16]  Jerry W. Knox,et al.  Water regulation, crop production, and agricultural water management—Understanding farmer perspectives on irrigation efficiency , 2012 .

[17]  Mohammad Valipour,et al.  Calibration of mass transfer-based models to predict reference crop evapotranspiration , 2017, Applied Water Science.

[18]  Peter H. Verburg,et al.  Exploring global irrigation patterns : a multilevel modelling approach , 2011 .

[19]  C. Madramootoo,et al.  Water table management impacts on phosphorus loads in tile drainage , 2007 .

[20]  M. Valipour A Comparison between Horizontal and Vertical Drainage Systems (Include Pipe Drainage, Open Ditch Drainage, and Pumped Wells) in Anisotropic Soils , 2012 .

[21]  R. Ragab,et al.  Improving agricultural water management in the semi-arid region of Brazil: experimental and modelling study , 2010, Irrigation Science.

[22]  Mohammad Valipour,et al.  How Much Meteorological Information Is Necessary to Achieve Reliable Accuracy for Rainfall Estimations , 2016 .

[23]  H. Plessis Evapotranspiration of citrus as affected by soil water deficit and soil salinity , 2004, Irrigation Science.

[24]  Andrew A. Keller,et al.  Irrigation Land Management model , 1992 .

[25]  C. Sherwood,et al.  Impacts of Watershed Management on Land-Margin Ecosystems: The Columbia River Estuary , 1992 .

[26]  Mohammad Valipour,et al.  INCREASING IRRIGATION EFFICIENCY BY MANAGEMENT STRATEGIES: CUTBACK AND SURGE IRRIGATION , 2013 .

[27]  Mohammad Valipour Ability of Box-Jenkins Models to Estimate of Reference Potential Evapotranspiration (A Case Study: Mehrabad Synoptic Station, Tehran, Iran) , 2012 .

[28]  M. Valipour,et al.  Analysis of potential evapotranspiration using 11 modified temperature-based models , 2014 .

[29]  M. Valipour Long‐term runoff study using SARIMA and ARIMA models in the United States , 2015 .

[30]  Mohammad Valipour,et al.  Future of agricultural water management in Africa , 2015 .

[31]  R. Raffaelli,et al.  The impact of climate change on permanent crops in an Alpine region: A Ricardian analysis , 2013 .

[32]  J. Neufeld,et al.  The State of Food and Agriculture , 1970 .

[33]  Mark Svendsen,et al.  Investing in irrigation: Reviewing the past and looking to the future , 2010 .

[34]  Adriana Bruggeman,et al.  Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries , 2007 .

[35]  Bart Schultz,et al.  Irrigation and drainage systems research and development in the 21st century , 2002 .

[36]  Jane R. Frankenberger,et al.  Simulated effect of drainage water management operational strategy on hydrology and crop yield for Drummer soil in the Midwestern United States , 2009 .

[37]  Mohammad Valipour,et al.  Temperature analysis of reference evapotranspiration models , 2015 .

[38]  M. Valipour Necessity of Irrigated and Rainfed Agriculture in the World , 2013 .

[39]  Mohammad Valipour,et al.  Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods , 2014, Water Resources Management.

[40]  J. Koch,et al.  Current and future irrigation water requirements in pan-Europe: An integrated analysis of socio-economic and climate scenarios , 2012 .

[41]  Mohammad Valipour,et al.  Application of new mass transfer formulae for computation of evapotranspiration , 2014 .

[42]  M. Valipour Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration , 2015 .

[43]  Zhiming Feng,et al.  Climate-induced changes in crop water balance during 1960-2001 in Northwest China , 2008 .

[44]  J. L. Ivey,et al.  Agricultural Water Use in Ontario , 2001 .

[45]  Mohammad Valipour,et al.  Evaluation of radiation methods to study potential evapotranspiration of 31 provinces , 2015, Meteorology and Atmospheric Physics.

[46]  Laurence Smith,et al.  Agricultural water management and poverty linkages , 2010 .

[47]  Mohammad Valipour,et al.  Land use policy and agricultural water management of the previous half of century in Africa , 2015, Applied Water Science.

[48]  Joaquim Monserrat,et al.  Irrigation & Drainage Systems Engineering , 2015 .

[49]  J. Magid,et al.  Taking stock of the Brazilian "zero-till revolution": a review of landmark research and farmers' practice , 2006 .

[50]  Mohammad Valipour,et al.  How do different factors impact agricultural water management? , 2016 .

[51]  M. Falkenmark The massive water scarcity now threatening Africa - why isn't it being addressed? , 1989 .

[52]  T. Franks,et al.  Developing capacity for agricultural water management: current practice and future directions , 2008 .

[53]  V. Singh,et al.  Global Experiences on Wastewater Irrigation: Challenges and Prospects , 2016 .

[54]  Mohammad Valipour,et al.  Modelling Evapotranspiration to Increase the Accuracy of the Estimations Based on the Climatic Parameters , 2016, Water Conservation Science and Engineering.

[55]  L. Naiken,et al.  Population and labour force projections for agricultural planning , 1976 .

[56]  Mohammad Valipour,et al.  Temporal analysis of reference evapotranspiration to detect variation factors , 2018 .

[57]  Mohammad Valipour,et al.  Analysis of potential evapotranspiration using limited weather data , 2017, Applied Water Science.

[58]  R. Kreutzwiser,et al.  Imagined Communities, Contested Watersheds: Challenges to Integrated Water Resources Management in Agricultural Areas. , 2008 .

[59]  Michael D. Dukes,et al.  Evaluation of Irrigation Scheduling Efficiency and Adequacy by Various Control Technologies Compared to Theoretical Irrigation Requirement , 2009 .

[60]  A. Evans,et al.  Investing in agricultural water management to benefit smallholder farmers in Ethiopia: AgWater Solutions Project country synthesis report. , 2012 .

[61]  Mohammad Valipour,et al.  Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations , 2015 .

[62]  Mohammad Ali Gholami Sefidkouhi,et al.  Estimation and trend evaluation of reference evapotranspiration in a humid region , 2017 .

[63]  I. Muzik,et al.  A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall-runoff model , 2002 .

[64]  J. Ayars,et al.  Controlled drainage for improved water management in arid regions irrigated agriculture , 2006 .

[65]  Shahbaz Khan,et al.  Water management and crop production for food security in China: A review , 2009 .

[66]  P. Michaels The greenhouse effect and global change: review and reappraisal , 1990 .

[67]  Wang Li,et al.  Evolution of Water Lifting Devices (Pumps) over the Centuries Worldwide , 2015 .