Building Terrestrial Planets

This article reviews our current understanding of terrestrial planet formation. The focus is on computer simulations of the dynamical aspects of the accretion process. Throughout the review, we combine the results of these theoretical models with geochemical, cosmochemical, and chronological constraints to outline a comprehensive scenario of the early evolution of our solar system. Given that the giant planets formed first in the protoplanetary disk, we stress the sensitive dependence of the terrestrial planet accretion process on the orbital architecture of the giant planets and on their evolution. This suggests a great diversity among the terrestrial planet populations in extrasolar systems. Issues such as the cause for the different masses and accretion timescales between Mars and Earth and the origin of water (and other volatiles) on our planet are discussed in depth.

[1]  Andrew S. Rivkin,et al.  Detection of ice and organics on an asteroidal surface , 2010, Nature.

[2]  A. Morbidelli,et al.  Terrestrial planet formation with strong dynamical friction , 2006 .

[3]  J. Lunine,et al.  The origin of water on Mars , 2002 .

[4]  Harold F. Levison,et al.  Constructing the secular architecture of the solar system II: The terrestrial planets , 2009, 0909.1891.

[5]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[6]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[7]  Kevin Righter,et al.  Determining the composition of the Earth , 2002, Nature.

[8]  W. Bottke,et al.  Towards initial mass functions for asteroids and Kuiper Belt Objects , 2010, 1004.0270.

[9]  Harold F. Levison,et al.  The Role of Giant Planets in Terrestrial Planet Formation , 2000 .

[10]  B. Hansen FORMATION OF THE TERRESTRIAL PLANETS FROM A NARROW ANNULUS , 2009, 0908.0743.

[11]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[12]  François Robert,et al.  The Late Asteroidal and Cometary Bombardment of Earth as Recorded in Water Deuterium to Protium Ratio , 2000 .

[13]  D. Rubie,et al.  Evidence for high-pressure core-mantle differentiation from the metal–silicate partitioning of lithophile and weakly-siderophile elements , 2009 .

[14]  J. P. Laboratory,et al.  Ice lines, planetesimal composition and solid surface density in the solar nebula , 2008, 0806.3788.

[15]  Mark J. McCaughrean,et al.  Direct Imaging of Circumstellar Disks in the Orion Nebula , 1996 .

[16]  A. Johansen,et al.  PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY , 2009, 0909.0259.

[17]  E. Kokubo,et al.  Formation of Protoplanets from Planetesimals in the Solar Nebula , 2000 .

[18]  Orbital Evolution of Planets Embedded in a Planetesimal Disk , 1999, astro-ph/9902370.

[19]  S. Raymond The Search for Other Earths: Limits on the Giant Planet Orbits That Allow Habitable Terrestrial Planets to Form , 2006, astro-ph/0605136.

[20]  S. Alexander,et al.  N-Body Simulations of Late Stage Planetary Formation with a Simple Fragmentation Model , 1998 .

[21]  Renu Malhotra,et al.  The origin of Pluto's orbit: implications for the , 1994, astro-ph/9504036.

[22]  D. Stevenson Formation of Giant Planets , 1982 .

[23]  R. Nelson,et al.  Building giant-planet cores at a planet trap , 2007, 0711.2344.

[24]  R. Canup,et al.  Accretion of the Moon from an Impact-Generated Disk , 1995 .

[25]  N. Thomas,et al.  A large dust/ice ratio in the nucleus of comet 9P/Tempel 1 , 2005, Nature.

[26]  William K. Hartmann,et al.  Planetesimals to planets: Numerical simulation of collisional evolution , 1978 .

[27]  Harold F. Levison,et al.  On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation , 1999 .

[28]  William R. Ward,et al.  Formation of the Galilean Satellites: Conditions of Accretion , 2002 .

[29]  David J. Stevenson,et al.  Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula , 1988 .

[30]  A. Halliday Timing, mechanisms and conditions of terrestrial planet accretion and early differentiation , 2005 .

[31]  F. A. Lindemann,et al.  The Age of the Earth , 1893, Nature.

[32]  E. Kokubo Formation of Terrestrial Planets from Protoplanets , 2008 .

[33]  J. Chambers Making More Terrestrial Planets , 2001 .

[34]  Origin of the ocean on the Earth : Early evolution of water D/H in a hydrogen-rich atmosphere , 2007, 0709.2025.

[35]  R. Nelson,et al.  Constraints on resonant-trapping for two planets embedded in a protoplanetary disc , 2008, 0802.2033.

[36]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[37]  J. Stadel,et al.  From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets , 2010, 1007.0579.

[38]  F. Masset,et al.  Reversing type II migration: resonance trapping of a lighter giant protoplanet , 2000, astro-ph/0101332.

[39]  High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics , 2005, astro-ph/0510284.

[40]  Harold F. Levison,et al.  Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? , 2004 .

[41]  Alwyn Wootten,et al.  Deuterated Water in Comet C/1996 B2 (Hyakutake) and Its Implications for the Origin of Comets☆ , 1998 .

[42]  G. Wetherill,et al.  Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. , 1993, Icarus.

[43]  F. Nimmo,et al.  Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets , 2009 .

[44]  A. Coradini,et al.  Asteroidal Sources of Earth's Water Based on Dynamical Simulations , 2007 .

[45]  Formation of terrestrial planets in a dissipating gas disk , 2003 .

[46]  S. Raymond,et al.  Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous Solar Nebula , 2011, 1107.5656.

[47]  P. Deymier,et al.  Computer simulations of water interactions with low-coordinated forsterite surface sites: Implications for the origin of water in the inner solar system , 2010 .

[48]  E. V. Pitjeva,et al.  Hidden Mass in the Asteroid Belt , 2002 .

[49]  Eiichiro Kokubo,et al.  FORMATION OF TERRESTRIAL PLANETS FROM PROTOPLANETS UNDER A REALISTIC ACCRETION CONDITION , 2010, 1003.4384.

[50]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[51]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[52]  W. Bottke,et al.  The primordial excitation and clearing of the asteroid belt—Revisited , 2006 .

[53]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[54]  R. Wieler,et al.  Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals , 2007, Nature.

[55]  B. Wood,et al.  Volatile accretion history of the Earth , 2010, Nature.

[56]  John E. Chambers,et al.  Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions , 1998 .

[57]  M. Barucci,et al.  Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission , 2008 .

[58]  A. Delsemme Cometary origin of carbon and water on the terrestrial planets. , 1992, Advances in space research : the official journal of the Committee on Space Research.

[59]  G. Wetherill Radiometric Chronology of the Early Solar System , 1975 .

[60]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[61]  T. Takeuchi,et al.  Orbital Migration of Protoplanets , 1999 .

[62]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[63]  Jack J. Lissauer,et al.  Timescales for planetary accretion and the structure of the protoplanetary disk , 1986 .

[64]  Julie Ziffer,et al.  Water ice and organics on the surface of the asteroid 24 Themis , 2010, Nature.

[65]  H. McSween,et al.  Asteroidal Heating and Thermal Stratification of the Asteroidal Belt , 2006 .

[66]  J. Makino,et al.  Scattering of Planetesimals by a Protoplanet: Slowing Down of Runaway Growth , 1993 .

[67]  C. Pillinger,et al.  Deuterium/hydrogen ratios in unequilibrated ordinary chondrites , 1981, Nature.

[68]  J. Lissauer,et al.  Accretion rates of protoplanets: II. Gaussian distributions of planetesimal velocities , 1991 .

[69]  Armand H. Delsemme,et al.  The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater , 1998 .

[70]  R. Binzel,et al.  Spectral Properties of Near-Earth Asteroids: Evidence for Sources of Ordinary Chondrite Meteorites , 1996, Science.

[71]  E. Kokubo,et al.  Formation of Protoplanet Systems and Diversity of Planetary Systems , 2002 .

[72]  B. Wood,et al.  Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning , 2008 .

[73]  P. Deymier,et al.  Origin of water in the inner Solar System: A kinetic Monte Carlo study of water adsorption on forsterite , 2008 .

[74]  S. Ida,et al.  The Effect of Tidal Interaction with a Gas Disk on Formation of Terrestrial Planets , 2002 .

[75]  Harold F. Levison,et al.  Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture , 2007, 0706.1713.

[76]  John Chambers,et al.  Planetesimal formation by turbulent concentration , 2010 .

[77]  J. Wettlaufer ACCRETION IN PROTOPLANETARY DISKS BY COLLISIONAL FUSION , 2009, 0911.5398.

[78]  Erik Asphaug,et al.  Accretion Efficiency during Planetary Collisions , 2004 .

[79]  A. Morbidelli A coherent and comprehensive model of the evolution of the outer Solar System , 2010, 1010.6221.

[80]  N. Kaib,et al.  Building the terrestrial planets: Constrained accretion in the inner Solar System , 2009, 0905.3750.

[81]  W. Ward Protoplanet Migration by Nebula Tides , 1997 .

[82]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[83]  Erik Asphaug,et al.  Hit-and-run planetary collisions , 2006, Nature.

[84]  T. Owen,et al.  Galileo Probe Measurements of D/H and 3He/4He in Jupiter's Atmosphere , 1998 .

[85]  L. Merlivat,et al.  Deuterium concentration in the early Solar System: hydrogen and oxygen isotope study , 1979, Nature.

[86]  E. Jarosewich Chemical analyses of ten stony meteorites , 1966 .

[87]  Jeffrey N. Cuzzi,et al.  The evolution of the water distribution in a viscous protoplanetary disk , 2005, astro-ph/0511372.

[88]  F. Albarède,et al.  Pb–Pb dating constraints on the accretion and cooling history of chondrites , 2007 .

[89]  F. Albarède Volatile accretion history of the terrestrial planets and dynamic implications , 2009, Nature.

[90]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[91]  F. Albarède,et al.  A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites , 2002, Nature.

[92]  D. Ebel,et al.  Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals , 2008 .

[93]  S. Weidenschilling,et al.  Dust to planetesimals: Settling and coagulation in the solar nebula , 1980 .

[94]  S. Paardekooper,et al.  ORBITAL MIGRATION OF LOW-MASS PLANETS IN EVOLUTIONARY RADIATIVE MODELS: AVOIDING CATASTROPHIC INFALL , 2010, 1003.0925.

[95]  Bernard Marty The origins and concentrations of water, carbon, nitrogen and noble gases on Earth , 2012 .

[96]  J. Chambers A semi-analytic model for oligarchic growth , 2006 .

[97]  D. Lin,et al.  On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets , 1986 .

[98]  A. Pourmand,et al.  Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo , 2011, Nature.

[99]  J. Laskar Large scale chaos and the spacing of the inner planets. , 1997 .

[100]  J. Chambers,et al.  The Primordial Excitation and Clearing of the Asteroid Belt , 2001 .

[101]  J. Stadel,et al.  How common are Earth-Moon planetary systems? , 2010, Proceedings of the International Astronomical Union.

[102]  K. P. Klaasen,et al.  Exposed Water Ice Deposits on the Surface of Comet 9P/Tempel 1 , 2006, Science.

[103]  Harold F. Levison,et al.  Asteroids Were Born Big , 2009, 0907.2512.

[104]  F. Robert,et al.  The hydrogen isotope composition of seawater and the global water cycle , 1998 .

[105]  Karim Shariff,et al.  Toward Planetesimals: Dense Chondrule Clumps in the Protoplanetary Nebula , 2008, 0804.3526.

[106]  C. Dullemond,et al.  FORMATION OF PLANETARY CORES AT TYPE I MIGRATION TRAPS , 2011, 1101.0942.

[107]  D. Lin,et al.  Dynamical Shake-up of Planetary Systems. II. N-Body Simulations of Solar System Terrestrial Planet Formation Induced by Secular Resonance Sweeping , 2008, 0802.0541.

[108]  J. Lunine,et al.  High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. , 2005, Astrobiology.

[109]  V. Safronov,et al.  Relative sizes of the largest bodies during the accumulation of planets , 1969 .

[110]  C. Sotin,et al.  Titan's Interior Structure , 2009 .

[111]  T. Owen,et al.  A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). , 1998, Science.

[112]  Julio A. Fernández,et al.  Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals , 1984 .

[113]  E. Kokubo,et al.  Formation of Terrestrial Planets from Protoplanets. I. Statistics of Basic Dynamical Properties , 2006 .

[114]  J. Kerridge Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.

[115]  A. Crida,et al.  The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk , 2007, 0704.1210.

[116]  G. Wetherill Origin of the asteroid belt. , 1989 .

[117]  Making other earths: dynamical simulations of terrestrial planet formation and water delivery , 2003, astro-ph/0308159.

[118]  Richard P. Binzel,et al.  Forging asteroid-meteorite relationships through reflectance spectroscopy , 2000 .

[119]  J. Chambers,et al.  Planets in the asteroid belt , 2001 .

[120]  A. Ruzicka,et al.  A multi‐step model for the origin of E3 (enstatite) chondrites , 2000 .

[121]  J. Lunine,et al.  Terrestrial Planet Formation in Disks with Varying Surface Density Profiles , 2005, astro-ph/0507004.

[122]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[123]  F. Robert The D/H Ratio in Chondrites , 2003 .

[124]  H. Palme,et al.  Collisional erosion and the non-chondritic composition of the terrestrial planets , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[125]  G. Libourel,et al.  Homogeneous Distribution of 26Al in the Solar System from the Mg Isotopic Composition of Chondrules , 2009, Science.

[126]  K. Righter,et al.  Water in the early Earth , 2007 .

[127]  A. Youdin,et al.  FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE , 2010, 1007.1465.

[128]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[129]  M. Ikoma,et al.  Constraints on the Mass of a Habitable Planet with Water of Nebular Origin , 2006, astro-ph/0606117.

[130]  J. Bally,et al.  Can Photoevaporation Trigger Planetesimal Formation? , 2004, astro-ph/0411647.

[131]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[132]  F. Nimmo,et al.  Heterogeneous accretion, composition and core–mantle differentiation of the Earth , 2011 .

[133]  E. Tedesco,et al.  Compositional Structure of the Asteroid Belt , 1982, Science.

[134]  H. Melosh,et al.  The origin of the moon and the single-impact hypothesis III. , 1991, Icarus.

[135]  Accretion of terrestrial planets from oligarchs in a turbulent disk , 2006, astro-ph/0612619.

[136]  T. Q. Uinn HIGH-RESOLUTION SIMULATIONS OF THE FINAL ASSEMBLY OF EARTH-LIKE PLANETS 1: TERRESTRIAL ACCRETION AND DYNAMICS , 2008 .

[137]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[138]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[139]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[140]  J. Lissauer,et al.  Accretion rates of protoplanets , 1990 .

[141]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[142]  S. Weidenschilling Can Gravitational Instability Form Planetesimals , 1995 .

[143]  H. Balsiger,et al.  D/H and 18 O/ 16 O Ratio in the Hydronium Ion and in Neutral Water from in Situ Ion Measurements in Comet Halley , 1995 .

[144]  P. Spurný,et al.  Meteorites from the Outer Solar System , 2008 .

[145]  F. Robert,et al.  The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites☆ , 1982 .

[146]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.