Extracting principles from biology for application to running robots

A traditional approach to designing hardware or control sys tems is to begin with a task to be accomplished, proceed to brainstorm possible solutions, and select from the options based on their relative merits. This approach discourages settling for preconceived, suboptimal solutions. In cases where millions of years of evolution appear to point toward a particular answer, we may be tempted to abandon this methodology and adopt the biological solution. It is precisely in these situations, however, that we must be most cautious of accepting the apparent answer. Evolution tends to improve survival, but not necessarily optimize performance of any one desired task. Therefore, we should attempt to extract only the principles relevant to the task of interest and measure them against other design candidates. I propose a framework for extracting biological principles u sing optimization and adapting them for application to robot s.

[1]  Min Cheol Lee,et al.  Development of a biped robot with toes to improve gait pattern , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[2]  Christopher Liu Darby,et al.  hp-Pseudospectral method for solving continuous-time nonlinear optimal control problems , 2011 .

[3]  Anil V. Rao,et al.  Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .

[4]  Andrew P. Robinson,et al.  Randomization, Bootstrap and Monte Carlo Methods in Biology , 2007 .

[5]  Cynthia Conti The mechanical determinants of energetic cost in backward running , 2009 .

[6]  M H Raibert,et al.  Trotting, pacing and bounding by a quadruped robot. , 1990, Journal of biomechanics.

[7]  Mark Yim,et al.  Modular configuration design for a controlled fall , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Ian A. Hiskens,et al.  Trajectory Sensitivity Analysis of Hybrid Systems , 2000 .

[9]  Steven Vogel,et al.  Nature's Swell, But Is It Worth Copying? , 2003 .

[10]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[11]  Koushil Sreenath,et al.  MABEL, a new robotic bipedal walker and runner , 2009, 2009 American Control Conference.

[12]  Marc H. Raibert,et al.  Control Of A Biped Somersault In 3D , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Gordon C. Oates Aircraft Propulsion Systems Technology and Design , 1989 .

[14]  Stefano Stramigioli,et al.  Parallel stiffness in a bounding quadruped with flexible spine , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Martijn Wisse,et al.  The effects of swing-leg retraction on running performance: analysis, simulation, and experiment , 2014, Robotica.

[16]  Zhiwei Luo,et al.  The Effect of Semicircular Feet on Energy Dissipation by Heel-strike in Dynamic Biped Locomotion , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  H. Geyer,et al.  Natural control of spring-like running : Optimised selfstabilisation , 2002 .

[18]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[19]  T. McGeer,et al.  Passive bipedal running , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[20]  Mark R. Cutkosky,et al.  Directional Adhesive Structures for Controlled Climbing on Smooth Vertical Surfaces , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[21]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[22]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[23]  Masayoshi Tomizuka,et al.  A lizard-inspired active tail enables rapid maneuvers and dynamic stabilization in a terrestrial robot , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[25]  Mark R. Cutkosky,et al.  Directional adhesion for climbing: theoretical and practical considerations , 2007 .

[26]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[27]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[28]  J. Davis Univariate Discrete Distributions , 2006 .

[29]  Chandana Paul,et al.  The road less travelled: morphology in the optimization of biped robot locomotion , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[30]  Reinhard Blickhan,et al.  Spring-Legged Locomotion on uneven Ground: A Control Approach to keep the running Speed constant , 2009 .

[31]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[32]  Ashok K. Goel,et al.  Biologically Inspired Design: A Macrocognitive Account , 2010, Volume 5: 22nd International Conference on Design Theory and Methodology; Special Conference on Mechanical Vibration and Noise.

[33]  Brooke M. Haueisen Investigation of an Articulated Spine in a Quadruped Robotic System , 2011 .

[34]  M. J. Myers,et al.  Effect of limb mass and its distribution on the energetic cost of running. , 1985, The Journal of experimental biology.

[35]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[36]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[37]  Marc H. Raibert,et al.  Experiments in Balance With a 2D One-Legged Hopping Machine , 1984 .

[38]  Juergen Rummel,et al.  Manuscript: Stable Running with Segmented Legs ¤ , 2008 .

[39]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[40]  A Jusufi,et al.  Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots , 2010, Bioinspiration & biomimetics.

[41]  Garth Zeglin,et al.  Uniroo--a one legged dynamic hopping robot , 1991 .

[42]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[43]  Jongwoo Lee,et al.  Tails in biomimetic design: Analysis, simulation, and experiment , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[44]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[45]  P. Diaconis,et al.  Sampling From A Manifold , 2012, 1206.6913.

[46]  John R Hutchinson,et al.  Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa , 2004, Journal of morphology.

[47]  Jonathan E. Clark,et al.  iSprawl: Design and Tuning for High-speed Autonomous Open-loop Running , 2006, Int. J. Robotics Res..

[48]  A. Seyfarth,et al.  Inheritance of SLIP running stability to a single-legged and bipedal model with leg mass and damping , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[49]  Ashok K. Goel,et al.  Biologically Inspired Design , 2014 .

[50]  Jessica K. Hodgins,et al.  Biped Gymnastics , 1988, Int. J. Robotics Res..

[51]  J. I The Design of Experiments , 1936, Nature.

[52]  H. Benjamin Brown,et al.  Experiments in Balance with a 3D One-Legged Hopping Machine , 1984 .

[53]  Fumiya Iida,et al.  Enlarging regions of stable running with segmented legs , 2008, 2008 IEEE International Conference on Robotics and Automation.

[54]  M. Lisowski,et al.  Biology : the web of life , 2000 .

[55]  H N Williford,et al.  Cardiovascular and metabolic costs of forward, backward, and lateral motion. , 1998, Medicine and science in sports and exercise.

[56]  K Steudel,et al.  The work and energetic cost of locomotion. I. The effects of limb mass distribution in quadrupeds. , 1990, The Journal of experimental biology.

[57]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[58]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[59]  Martijn Wisse,et al.  Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection , 2008, IEEE Transactions on Robotics.

[60]  Kimberly L. Turner,et al.  A batch fabricated biomimetic dry adhesive , 2005 .

[61]  Fabio Schoen,et al.  Stochastic techniques for global optimization: A survey of recent advances , 1991, J. Glob. Optim..

[62]  Ryota Hayashi,et al.  High-performance jumping movements by pendulum-type jumping machines , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[63]  P. Beek,et al.  Assessing the stability of human locomotion: a review of current measures , 2013, Journal of The Royal Society Interface.

[64]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[65]  M G Paulin,et al.  An upper-body can improve the stability and efficiency of passive dynamic walking. , 2011, Journal of theoretical biology.

[66]  Paul I. Barton,et al.  Modeling, simulation, sensitivity analysis, and optimization of hybrid systems , 2002, TOMC.

[67]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[68]  P. I. Barton,et al.  Parametric sensitivity functions for hybrid discrete/continuous systems , 1999 .

[69]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[70]  Jessica K. Hodgins,et al.  Dynamically Stable Legged Locomotion , 1983 .

[71]  Russ Tedrake,et al.  Direct Trajectory Optimization of Rigid Body Dynamical Systems through Contact , 2012, WAFR.

[72]  Lijie Ci,et al.  Gecko-inspired carbon nanotube-based self-cleaning adhesives. , 2008, Nano letters.

[73]  Martin Buehler,et al.  Modeling and Experiments of Untethered Quadrupedal Running with a Bounding Gait: The Scout II Robot , 2005, Int. J. Robotics Res..

[74]  Jonas Rubenson,et al.  Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics , 2011, Journal of The Royal Society Interface.

[75]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[76]  M. Smutok,et al.  Comparison of cardiopulmonary responses to forward and backward walking and running. , 1994, Medicine and science in sports and exercise.

[77]  Divya Garg,et al.  ADVANCES IN GLOBAL PSEUDOSPECTRAL METHODS FOR OPTIMAL CONTROL , 2011 .

[78]  C. T. Farley,et al.  Running springs: speed and animal size. , 1993, The Journal of experimental biology.

[79]  Ronald S Fearing,et al.  Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[80]  Geoffrey Todd Huntington,et al.  Advancement and analysis of Gauss pseudospectral transcription for optimal control problems , 2007 .

[81]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[82]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[83]  M. Daley,et al.  Two explanations for the compliant running paradox: reduced work of bouncing viscera and increased stability in uneven terrain , 2010, Biology Letters.

[84]  Susanne W. Lipfert,et al.  Swing leg control in human running , 2010, Bioinspiration & biomimetics.

[85]  Chandana Paul,et al.  Design and control of a pendulum driven hopping robot , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[86]  Daan G. E. Hobbelen,et al.  Limit Cycle Walking , 2007 .

[87]  Mikhail S. Jones,et al.  EFFECTS OF LEG CONFIGURATION ON RUNNING AND WALKING ROBOTS , 2012 .

[88]  Ashok K. Goel,et al.  Biologically inspired design: process and products , 2009 .

[89]  Tony Unsworth,et al.  Proceedings of the Institution of Mechanical Engineers Part H. , 2008, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[90]  R. Full,et al.  Tail-assisted pitch control in lizards, robots and dinosaurs , 2012, Nature.

[91]  R. McN. Alexander,et al.  Mechanics of running of the ostrich (Struthio camelus) , 2009 .

[92]  G. Cavagna,et al.  Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. , 1977, The American journal of physiology.

[93]  Martijn Wisse,et al.  A Disturbance Rejection Measure for Limit Cycle Walkers: The Gait Sensitivity Norm , 2007, IEEE Transactions on Robotics.

[94]  N. C. Dimensional Analysis , 1932, Nature.

[95]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[96]  Robert L. Nagel,et al.  Function-based, biologically inspired concept generation , 2010, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[97]  D. Cacuci Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach , 1981 .

[98]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[99]  Michael Günther,et al.  Intelligence by mechanics , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[100]  R. Blickhan,et al.  Running on uneven ground: leg adjustments to altered ground level. , 2010, Human movement science.

[101]  Martijn Wisse,et al.  The optimal swing-leg retraction rate for running , 2011, 2011 IEEE International Conference on Robotics and Automation.

[102]  Manoj Srinivasan,et al.  Computer optimization of a minimal biped model discovers walking and running , 2006, Nature.

[103]  J. Vincent,et al.  Biomimetics: its practice and theory , 2006, Journal of The Royal Society Interface.

[104]  Mark R. Cutkosky,et al.  Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[105]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[106]  R. Fearing,et al.  Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour , 2008, Journal of The Royal Society Interface.

[107]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[108]  Hartmut Geyer,et al.  Swing-leg retraction: a simple control model for stable running , 2003, Journal of Experimental Biology.

[109]  Jerry Pratt,et al.  Exploiting Natural Dynamics in the Control of a Planar Bipedal Walking Robot , 1998 .

[110]  Fumihiko Asano Effects of swing-leg retraction and mass distribution on energy-loss coefficient in limit cycle walking , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[111]  Julie S. Linsey,et al.  Methods for Supporting Bioinspired Design , 2011 .

[112]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[113]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[114]  P G Weyand,et al.  The application of ground force explains the energetic cost of running backward and forward. , 2001, The Journal of experimental biology.

[115]  Arvind Ananthanarayanan,et al.  Towards a bio-inspired leg design for high-speed running , 2012, Bioinspiration & biomimetics.

[116]  Denis A. Coelho,et al.  A comparative analysis of six bionic design methods , 2011 .

[117]  Avraham Adler,et al.  Lambert-W Function , 2015 .

[118]  Martijn Wisse,et al.  Dynamic Stability of a Simple Biped Walking System with Swing Leg Retraction , 2006 .

[119]  Martijn Wisse,et al.  The effect of swing leg retraction on running energy efficiency , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[120]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[121]  Utku Culha,et al.  Quadrupedal bounding with an actuated spinal joint , 2011, 2011 IEEE International Conference on Robotics and Automation.