Highly accurate quadrature-based Scharfetter-Gummel schemes for charge transport in degenerate semiconductors
暂无分享,去创建一个
Thomas Koprucki | Jürgen Fuhrmann | Patricio Farrell | Matteo Patriarca | J. Fuhrmann | T. Koprucki | P. Farrell | M. Patriarca
[1] M. Green. Intrinsic concentration, effective densities of states, and effective mass in silicon , 1990 .
[2] L. Delves,et al. Computational methods for integral equations: Frontmatter , 1985 .
[3] Robert Eymard,et al. A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local dirichlet problems , 2006, Numerische Mathematik.
[4] W. V. Roosbroeck. Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .
[5] Jürgen Fuhrmann,et al. Comparison and numerical treatment of generalised Nernst-Planck models , 2015, Comput. Phys. Commun..
[6] K. Gärtner. Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi–Dirac statistic functions , 2014 .
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] G. Paasch,et al. Charge carrier density of organics with Gaussian density of states: Analytical approximation for the Gauss–Fermi integral , 2010 .
[9] Beat Ruhstaller,et al. Numerical simulation of charge transport in disordered organic semiconductor devices , 2010 .
[10] Ron Wakkary,et al. Integration , 2016, Interactions.
[11] Marianne Bessemoulin-Chatard,et al. A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme , 2010, Numerische Mathematik.
[12] Thomas Koprucki,et al. Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures , 2016 .
[13] Thomas Koprucki,et al. On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement , 2014 .
[14] R. Coehoorn,et al. Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors , 2008 .
[15] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[16] Thomas Koprucki,et al. Drift-Diffusion Models , 2017 .
[17] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.
[18] W. Fichtner,et al. Semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.
[19] N. Mohankumar,et al. The accurate numerical evaluation of half-order Fermi-Dirac integrals , 1995 .
[20] Klaus Gärtner,et al. Discretization scheme for drift-diffusion equations with strong diffusion enhancement , 2012 .
[21] A. Stroud,et al. Nodes and Weights of Quadrature Formulas , 1965 .
[22] Prem K. Kythe,et al. Handbook of Computational Methods for Integration , 2004 .
[23] H. Gummel,et al. Large-signal analysis of a silicon Read diode oscillator , 1969 .
[24] Thomas Koprucki,et al. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics , 2016, J. Comput. Phys..
[25] Francis Jack Smith,et al. Error Estimation in the Clenshaw-Curtis Quadrature Formula , 1968, Comput. J..
[26] Germund Dahlquist,et al. Numerical Methods in Scientific Computing: Volume 1 , 2008 .
[27] Germund Dahlquist,et al. Numerical methods in scientific computing , 2008 .
[28] A. S. Kronrod,et al. Nodes and weights of quadrature formulas : sixteen-place tables , 1965 .