On the convergence of Bayesian posterior processes in linear economic models Counting equations and unknowns

[1]  N. Kiefer,et al.  Optimal Control of an Unknown Linear Process with Learning , 1989 .

[2]  T. Sargent,et al.  Convergence of Least Squares Learning Mechanisms in Self- Referential Linear Stochastic Models* , 1989 .

[3]  N. Kiefer,et al.  Controlling a Stochastic Process with Unknown Parameters , 1988 .

[4]  Mark Feldman An Example of Convergence to Rational Expectations with Heterogeneous Beliefs , 1987 .

[5]  M. Bray,et al.  Rational Expectations Equilibria, Learning, and Model Specification , 1986 .

[6]  H. White Asymptotic theory for econometricians , 1985 .

[7]  L. Blume,et al.  Rational expectations equilibrium: An alternative approach , 1984 .

[8]  A. McLennan Price dispersion and incomplete learning in the long run , 1984 .

[9]  T. W. Anderson,et al.  STRONG CONSISTENCY OF LEAST SQUARES ESTIMATES IN DYNAMIC MODELS , 1979 .

[10]  Leonard J. Mirman,et al.  A Bayesian Approach to the Production of Information and Learning by Doing , 1977 .

[11]  M. Rothschild A two-armed bandit theory of market pricing , 1974 .

[12]  John B. Taylor Asymptotic Properties of Multiperiod Control Rules in the Linear Regression Model , 1974 .

[13]  E. Prescott THE MULTI-PERIOD CONTROL PROBLEM UNDER UNCERTAINTY , 1972 .

[14]  Roman Frydman,et al.  Towards an Understanding of Market Processes: Individual Expectations, Market Behavior and Convergence to Rational Expectations Equilibrium , 1981 .

[15]  David Siegmund,et al.  Great expectations: The theory of optimal stopping , 1971 .

[16]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .